广州大学学报:自然科学版
廣州大學學報:自然科學版
엄주대학학보:자연과학판
Journal og Guangzhou University:Natural Science Edition
2011年
5期
7-12
,共6页
似然比检验%拒绝域%无偏性%生长曲线
似然比檢驗%拒絕域%無偏性%生長麯線
사연비검험%거절역%무편성%생장곡선
likelihood ration test%rejection region%unbiasedness%growth curve
讨论了复生长曲线模型中尺度参数∑和位置参数ξ的检验问题.设原假设为①H1:∑=Ip(Ip为P阶单位阵);②H2:∑=Ip且ξ:0(0为q×m阶零矩阵);③H3:∑=σ2Ip(σ2〉0且未知).证明了当A为分块对角矩阵时,相应于备择假设Ai≠Hi(i=1,2,3)检验原假设Hi的似然比检验是无偏的.
討論瞭複生長麯線模型中呎度參數∑和位置參數ξ的檢驗問題.設原假設為①H1:∑=Ip(Ip為P階單位陣);②H2:∑=Ip且ξ:0(0為q×m階零矩陣);③H3:∑=σ2Ip(σ2〉0且未知).證明瞭噹A為分塊對角矩陣時,相應于備擇假設Ai≠Hi(i=1,2,3)檢驗原假設Hi的似然比檢驗是無偏的.
토론료복생장곡선모형중척도삼수∑화위치삼수ξ적검험문제.설원가설위①H1:∑=Ip(Ip위P계단위진);②H2:∑=Ip차ξ:0(0위q×m계령구진);③H3:∑=σ2Ip(σ2〉0차미지).증명료당A위분괴대각구진시,상응우비택가설Ai≠Hi(i=1,2,3)검험원가설Hi적사연비검험시무편적.
The problems on hypothetical testing of scale and location parameter in a complex growth curve model are considered in this paper. Suppose the null hypotheses are as follows:①H1:∑=Ip(Ip is an identity matrix of order p);②H2:∑=Ip andξ:0(0 is a zero matrix of order q × m);③H3:∑=σ2Ip(σ2 is unknown positive number). It is derived that the likelihood tests of the null hypotheses Hi against above alternative hypotheses Ai≠Hi ( i = 1,2,3 ) are unbiased when ∑ is the form of block diagonal matrix in Section 2.