中国组织工程研究与临床康复
中國組織工程研究與臨床康複
중국조직공정연구여림상강복
JOURNAL OF CLINICAL REHABILITATIVE TISSUE ENGINEERING RESEARCH
2009年
49期
9631-9636
,共6页
丁鹏%薛黎萍%宋晓斌%李玉%龙江%王伟民%杨智勇%王进昆%林荣安
丁鵬%薛黎萍%宋曉斌%李玉%龍江%王偉民%楊智勇%王進昆%林榮安
정붕%설려평%송효빈%리옥%룡강%왕위민%양지용%왕진곤%림영안
脊髓损伤%骨髓基质细胞%移植%轴突%再生
脊髓損傷%骨髓基質細胞%移植%軸突%再生
척수손상%골수기질세포%이식%축돌%재생
背景:近年来,部分学者证明骨髓基质细胞移植可促进轴突再生,改善脊髓损伤引起的运动功能障碍,但目前关于移植骨髓基质细胞如何促进轴突再生,移植细胞与再生轴突的关系尚不清楚.目的:通过免疫荧光组织化学和免疫电镜的方法,探讨移植骨髓基质细胞促进脊髓全横断损伤区轴突再生的机制.设计、时间及地点:随机对照动物实验,细胞学体内观察,于2006-03/2007-06在新加坡国立大学解剖系完成.材料:清洁级Wistar新生大鼠1只,用于骨髓基质细胞培养.清洁级成年雌性Wistar大鼠36只,无菌条件下显露、切断脊髓T_(10),制备脊髓全横断损伤模型.方法:通过传代法培养、纯化骨髓基质细胞.36只成年Wistar雌性大鼠随机投币法分为移植组和对照组,每组18只.移植组大鼠脊髓全横断损伤9 d后以1×10~(11)L~(-1)的密度移植骨髓基质细胞,缺损区5μL,损伤区上、下1 mm处各2.5 μL,对照组动物在相同部位注射等量DMEM完全培养基,注射速度1 μL/min.主要观察指标:①移植骨髓基质细胞存活、分化情况.②轴突再生情况.③移植组和对照组宿主自身的nestin、NF200、GFAP和CNP阳性细胞在脊髓损伤区存活情况.④内源性CNP阳性细胞和再生纤维关系.结果:骨髓基质细胞移植2周时,脊髓损伤区可见大量CFDA-SE标记的移植细胞,随时间延长,存活的移植细胞数目逐渐降低,考虑脊髓损伤区内大量的0×42阳性吞噬细胞,激活小胶质细胞及空洞可能影响移植细胞的存活.虽然骨髓基质细胞数目逐渐降低,骨髓基质细胞移植可促进损伤区轴突的再生,而且还可促进宿主自身的nestin、NF200、GFAP和CNP阳性细胞在脊髓损伤区存活.宿主自身CNP和许旺细胞促进损伤轴突的再生和髓鞘形成.结论:移植骨髓基质细胞移植可促进宿主自身CNP和许旺细胞在脊髓损伤区存活,后者具有促进损伤轴突再生和髓鞘形成的作用.
揹景:近年來,部分學者證明骨髓基質細胞移植可促進軸突再生,改善脊髓損傷引起的運動功能障礙,但目前關于移植骨髓基質細胞如何促進軸突再生,移植細胞與再生軸突的關繫尚不清楚.目的:通過免疫熒光組織化學和免疫電鏡的方法,探討移植骨髓基質細胞促進脊髓全橫斷損傷區軸突再生的機製.設計、時間及地點:隨機對照動物實驗,細胞學體內觀察,于2006-03/2007-06在新加坡國立大學解剖繫完成.材料:清潔級Wistar新生大鼠1隻,用于骨髓基質細胞培養.清潔級成年雌性Wistar大鼠36隻,無菌條件下顯露、切斷脊髓T_(10),製備脊髓全橫斷損傷模型.方法:通過傳代法培養、純化骨髓基質細胞.36隻成年Wistar雌性大鼠隨機投幣法分為移植組和對照組,每組18隻.移植組大鼠脊髓全橫斷損傷9 d後以1×10~(11)L~(-1)的密度移植骨髓基質細胞,缺損區5μL,損傷區上、下1 mm處各2.5 μL,對照組動物在相同部位註射等量DMEM完全培養基,註射速度1 μL/min.主要觀察指標:①移植骨髓基質細胞存活、分化情況.②軸突再生情況.③移植組和對照組宿主自身的nestin、NF200、GFAP和CNP暘性細胞在脊髓損傷區存活情況.④內源性CNP暘性細胞和再生纖維關繫.結果:骨髓基質細胞移植2週時,脊髓損傷區可見大量CFDA-SE標記的移植細胞,隨時間延長,存活的移植細胞數目逐漸降低,攷慮脊髓損傷區內大量的0×42暘性吞噬細胞,激活小膠質細胞及空洞可能影響移植細胞的存活.雖然骨髓基質細胞數目逐漸降低,骨髓基質細胞移植可促進損傷區軸突的再生,而且還可促進宿主自身的nestin、NF200、GFAP和CNP暘性細胞在脊髓損傷區存活.宿主自身CNP和許旺細胞促進損傷軸突的再生和髓鞘形成.結論:移植骨髓基質細胞移植可促進宿主自身CNP和許旺細胞在脊髓損傷區存活,後者具有促進損傷軸突再生和髓鞘形成的作用.
배경:근년래,부분학자증명골수기질세포이식가촉진축돌재생,개선척수손상인기적운동공능장애,단목전관우이식골수기질세포여하촉진축돌재생,이식세포여재생축돌적관계상불청초.목적:통과면역형광조직화학화면역전경적방법,탐토이식골수기질세포촉진척수전횡단손상구축돌재생적궤제.설계、시간급지점:수궤대조동물실험,세포학체내관찰,우2006-03/2007-06재신가파국립대학해부계완성.재료:청길급Wistar신생대서1지,용우골수기질세포배양.청길급성년자성Wistar대서36지,무균조건하현로、절단척수T_(10),제비척수전횡단손상모형.방법:통과전대법배양、순화골수기질세포.36지성년Wistar자성대서수궤투폐법분위이식조화대조조,매조18지.이식조대서척수전횡단손상9 d후이1×10~(11)L~(-1)적밀도이식골수기질세포,결손구5μL,손상구상、하1 mm처각2.5 μL,대조조동물재상동부위주사등량DMEM완전배양기,주사속도1 μL/min.주요관찰지표:①이식골수기질세포존활、분화정황.②축돌재생정황.③이식조화대조조숙주자신적nestin、NF200、GFAP화CNP양성세포재척수손상구존활정황.④내원성CNP양성세포화재생섬유관계.결과:골수기질세포이식2주시,척수손상구가견대량CFDA-SE표기적이식세포,수시간연장,존활적이식세포수목축점강저,고필척수손상구내대량적0×42양성탄서세포,격활소효질세포급공동가능영향이식세포적존활.수연골수기질세포수목축점강저,골수기질세포이식가촉진손상구축돌적재생,이차환가촉진숙주자신적nestin、NF200、GFAP화CNP양성세포재척수손상구존활.숙주자신CNP화허왕세포촉진손상축돌적재생화수초형성.결론:이식골수기질세포이식가촉진숙주자신CNP화허왕세포재척수손상구존활,후자구유촉진손상축돌재생화수초형성적작용.
BACKGROUND: Although previous studies have indicated that transplantation of marrow stromal cells (MSCs) has enhanced axonal regeneration and improved motor dysfunction induced by spinal cord injury. However, it is still unclear how transplanted MSCs promoted axonal regeneration and the relationship of transplanted cells and regenerated axons.OBJECTIVE: By immunofluorescence and immunoelectron microscopy, this study sought to elucidate the mechanism of promoting axonal sprouting following transplantation of MSCs into a completely transected spinal cord.DESIGN, TIME AND SETTING: The in vivo cytology randomized controlled animal experiment was performed at the Department of Anatomy of National University of Singapore from March 2006 to June 2007.MATERIALS: MSCs were isolated and purified from a Wistar neonatal rat. Model of completely transected spinal cord injury was established by transection at T_(10) segment with asepsis technique using 36 clean adult female Wistar rats.METHODS: MSCs were subcultured and purified. Thirty-six adult female Wistar rats were randomly divided into transplanted and control groups, with 18 animals in each group. Following 9 days of completely transected spinal cord injury, rats in the transplanted group were injected with MSCs (1×10~(11)/L), 5 μL in the defect region and 2.5 μL in 1 mm upper and lower the defect region. Rats in the control group were infused with an equal volume of DMEM, at the speed of 1 μL/min.MAIN OUTCOME MESSURES: Survival and differentiation of transplanted MSCs; Regeneration of axon and survival of host-derived nestin-, NF200-, GFAP-, and CNP-positive cells in control and transplanted groups; Relationship of regenerated axon and CNP-positive cells RESULTS: Two weeks after transplantation, a large number of CFDA-SE labeled MSCs were detected in the lesion site. Survival transplanted cell number was decreased over time. Abundant 0×42-positive phagocytes/activated microglia and cavity might affect the survival of transplanted cells. The number of MSCs was decreased, but MSC transplantation could promote axonal regeneration in the lesion site, and enhance the survival of host-derived nestin-, NF200-, GFAP-, and CNP-positive cells in lesion site, and host-derived CNP-positive cells and Schwann cells provided structural support to regenerated axons and promote their remyelination in spinal cord injury.CONCLUSION: Transplantation of MSCs enhances survival of host-derived CNP- positive cells and Schwann cells, and which may provide structural support to regenerated axons and promote their remyelination in spinal cord injury.