土壤学报
土壤學報
토양학보
ACTA PEDOLOGICA SINICA
2010年
1期
33-41
,共9页
廖凯华%徐绍辉%程桂福%林青
廖凱華%徐紹輝%程桂福%林青
료개화%서소휘%정계복%림청
PTF_S%大沽河流域%土壤%持水特性%空间变异性
PTF_S%大沽河流域%土壤%持水特性%空間變異性
PTF_S%대고하류역%토양%지수특성%공간변이성
PTF_S%the Dagu Rriver Basin%Soil%Water retention capability%Spatial variability
利用点估计模型、线性回归模型、非线性回归模型和人工神经网络模型等四种PTF_S分别预测大沽河流域90个土壤样本的田间持水量(θ_(-30 kPa))和凋萎含水量(θ_(-1 500 kPa)),借助传统统计学和地统计学方法对其空间变异性进行了比较分析.传统统计学分析认为非线性回归模型预测的效果最好,无论是实测值还是估计值,所有土壤样本θ_(-30 kPa)的变异系数总是小于θ_(-1 500 kPa),两者均属于中等变异性;地统计学分析表明实测值和预测值的θ_(-30 kPa)和θ_(-1 500 kPa)均存在不同程度的块金效应,且θ_(-30 kPa)总是表现出较θ_(-1 500 kPa)更强烈的空间相关性,通过分析θ_(-30 kPa)和θ_(-1 500 kPa)的半方差函数模型参数,发现人工神经网络模型最能真实地反映试验区土壤持水特性的空间变异性特征.
利用點估計模型、線性迴歸模型、非線性迴歸模型和人工神經網絡模型等四種PTF_S分彆預測大沽河流域90箇土壤樣本的田間持水量(θ_(-30 kPa))和凋萎含水量(θ_(-1 500 kPa)),藉助傳統統計學和地統計學方法對其空間變異性進行瞭比較分析.傳統統計學分析認為非線性迴歸模型預測的效果最好,無論是實測值還是估計值,所有土壤樣本θ_(-30 kPa)的變異繫數總是小于θ_(-1 500 kPa),兩者均屬于中等變異性;地統計學分析錶明實測值和預測值的θ_(-30 kPa)和θ_(-1 500 kPa)均存在不同程度的塊金效應,且θ_(-30 kPa)總是錶現齣較θ_(-1 500 kPa)更彊烈的空間相關性,通過分析θ_(-30 kPa)和θ_(-1 500 kPa)的半方差函數模型參數,髮現人工神經網絡模型最能真實地反映試驗區土壤持水特性的空間變異性特徵.
이용점고계모형、선성회귀모형、비선성회귀모형화인공신경망락모형등사충PTF_S분별예측대고하류역90개토양양본적전간지수량(θ_(-30 kPa))화조위함수량(θ_(-1 500 kPa)),차조전통통계학화지통계학방법대기공간변이성진행료비교분석.전통통계학분석인위비선성회귀모형예측적효과최호,무론시실측치환시고계치,소유토양양본θ_(-30 kPa)적변이계수총시소우θ_(-1 500 kPa),량자균속우중등변이성;지통계학분석표명실측치화예측치적θ_(-30 kPa)화θ_(-1 500 kPa)균존재불동정도적괴금효응,차θ_(-30 kPa)총시표현출교θ_(-1 500 kPa)경강렬적공간상관성,통과분석θ_(-30 kPa)화θ_(-1 500 kPa)적반방차함수모형삼수,발현인공신경망락모형최능진실지반영시험구토양지수특성적공간변이성특정.
Field water retention capacities (θ_(-30 kPa)) and wilting coefficients (θ_(-1 500 kPa)) of ninety soil samples in the Dagu River Basin were predicted separately with four PTF_S, i.e. point regression method, linear regression method, nonlinear regression method and artificial neural network method, and their spatial variabilities were analyzed with the aid of traditional statistic and geostatistic methods. The traditional statistics revealed that the nonlinear regression method was the best with the variation coefficients of θ_(-30 kPa) of all the soil samples, being always less than θ_(-1 500 kPa), however, no matter measured or predicted values, both belonged to the category of moderate in spatial variability. The geostatistics also showed that both measured and predicted θ_(-30 kPa) and θ_(-1 500 kPa) demonstrated varied nugget effects, moreover, θ_(-30 kPa) always had stronger spatial dependence than θ_(-1 500 kPa) did. Analysis of the parameters of semi-variance model for θ_(-30 kPa) and θ_(-1 500 kPa) ultimately revealed that the artificial neural network model could most truthfully characterize spatial variability of the soil water retention capability in the experimental zone.