计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2009年
6期
705-711
,共7页
张列%尹京苑%李重河%郭景康
張列%尹京苑%李重河%郭景康
장렬%윤경원%리중하%곽경강
前列腺癌%头发微量元素%ICP-MS%SPRA-PCA
前列腺癌%頭髮微量元素%ICP-MS%SPRA-PCA
전렬선암%두발미량원소%ICP-MS%SPRA-PCA
prostate cancer%hair trace element%SPRA-PCA%ICP-MS
人体内微最元素浓度的变化预示人体健康状况的改变,对于肿瘤病人尤其重要.本工作收集了93份头发样品,其中包括48个前列腺癌病人和45个作为对照的正常人的头发样品.应用ICP-MS方法测量这些样品中20种微量元素组成,用主成分分析的统计模式识别方法(SPRA-PCA),分析测量结果,以寻求前列腺痛病人头发微量元素的变化特征.结果表明,在20种微量元素中,钙和磷的含量变化与前列腺癌密切相关.于是,用钙和磷的含量构建一个预报前列腺癌的可视化模型,可清晰辨别前列腺癌病人与正常人.为了验证模型的预报能力,用这个模型去预报一组新的样本,预报结果与临床诊断完全相同.
人體內微最元素濃度的變化預示人體健康狀況的改變,對于腫瘤病人尤其重要.本工作收集瞭93份頭髮樣品,其中包括48箇前列腺癌病人和45箇作為對照的正常人的頭髮樣品.應用ICP-MS方法測量這些樣品中20種微量元素組成,用主成分分析的統計模式識彆方法(SPRA-PCA),分析測量結果,以尋求前列腺痛病人頭髮微量元素的變化特徵.結果錶明,在20種微量元素中,鈣和燐的含量變化與前列腺癌密切相關.于是,用鈣和燐的含量構建一箇預報前列腺癌的可視化模型,可清晰辨彆前列腺癌病人與正常人.為瞭驗證模型的預報能力,用這箇模型去預報一組新的樣本,預報結果與臨床診斷完全相同.
인체내미최원소농도적변화예시인체건강상황적개변,대우종류병인우기중요.본공작수집료93빈두발양품,기중포괄48개전렬선암병인화45개작위대조적정상인적두발양품.응용ICP-MS방법측량저사양품중20충미량원소조성,용주성분분석적통계모식식별방법(SPRA-PCA),분석측량결과,이심구전렬선통병인두발미량원소적변화특정.결과표명,재20충미량원소중,개화린적함량변화여전렬선암밀절상관.우시,용개화린적함량구건일개예보전렬선암적가시화모형,가청석변별전렬선암병인여정상인.위료험증모형적예보능력,용저개모형거예보일조신적양본,예보결과여림상진단완전상동.
A change in the normal concentration of essential trace elements in human body may lead to major health disruption, thus it is interesting to study this variety beth in cancerous and noncancerous human. In this work, 93 samples of hair were collected, inclu-ding 45 healthy person hair samples (HPHS) and 48 prostate cancer patient hair samples (PCPHS), the concentration of twenty trace elements (TEs) in these samples were measured by ICP-MS. Statistic pattern recognition based on principle component analysis (SPA-PCA) had been used to investigate the relationship of TEs with prostate cancer. It was found that, among twenty TEs, calcium and phosphor had the important effect on the risk of prostate cancer. Concentration of calcium and phosphor were used to build up the pre-diction model for prostate cancer, the model obtained can distinguish HPHS from PCPHS. Furthermore, the prediction ability of the model had been proven with new samples including ten HPHS and ten PCPHS. It acquires complete right prediction. It is practical to predict the risk of prostate cancer by this model in the clinical.