西南石油大学学报(自然科学版)
西南石油大學學報(自然科學版)
서남석유대학학보(자연과학판)
JOURNAL OF SOUTHWEST PETROLEUM UNIVERSITY(SEIENCE & TECHNOLOGY EDITION)
2010年
1期
57-62
,共6页
郎晓玲%彭仕宓%康洪全%张凤红
郎曉玲%彭仕宓%康洪全%張鳳紅
랑효령%팽사복%강홍전%장봉홍
三维可视化%地震属性%砂体预测%岩性油气藏%神经网络%地震相
三維可視化%地震屬性%砂體預測%巖性油氣藏%神經網絡%地震相
삼유가시화%지진속성%사체예측%암성유기장%신경망락%지진상
three-dimensional visualization%seismic attribute%sand body prediction%lithologic reservoir%neural network%seismic facies
对单一地震属性采用神经网络技术进行分类,在低信噪比地区很难准确进行地震相分析和砂体预测.根据地震波形理论,基于Seisfacies的多属性体分类、PCA主成分分析、混合聚比法和自组织人工神经网络技术对层段内多种地震属性体按照相似性原则进行统计聚类分析,并在区域内进行地震相自动划分,得到地震相三维数据体.结合钻井资料,借助三维可视化技术在三维空间中预测储层砂体的空间分布,大大减少了地震相划分的多解性,提高了储层预测的精度和工作效率.对华北油田万庄地区扇三角洲砂体进行预测,在三维空间中精细刻画了沙三中段扇三角洲砂体的边界和空间展布,预测了有利储层的发育区,发现并落实了3个有利的岩性圈闭,部署钻探的T12X、T47等井均获工业油流,效果很好.
對單一地震屬性採用神經網絡技術進行分類,在低信譟比地區很難準確進行地震相分析和砂體預測.根據地震波形理論,基于Seisfacies的多屬性體分類、PCA主成分分析、混閤聚比法和自組織人工神經網絡技術對層段內多種地震屬性體按照相似性原則進行統計聚類分析,併在區域內進行地震相自動劃分,得到地震相三維數據體.結閤鑽井資料,藉助三維可視化技術在三維空間中預測儲層砂體的空間分佈,大大減少瞭地震相劃分的多解性,提高瞭儲層預測的精度和工作效率.對華北油田萬莊地區扇三角洲砂體進行預測,在三維空間中精細刻畫瞭沙三中段扇三角洲砂體的邊界和空間展佈,預測瞭有利儲層的髮育區,髮現併落實瞭3箇有利的巖性圈閉,部署鑽探的T12X、T47等井均穫工業油流,效果很好.
대단일지진속성채용신경망락기술진행분류,재저신조비지구흔난준학진행지진상분석화사체예측.근거지진파형이론,기우Seisfacies적다속성체분류、PCA주성분분석、혼합취비법화자조직인공신경망락기술대층단내다충지진속성체안조상사성원칙진행통계취류분석,병재구역내진행지진상자동화분,득도지진상삼유수거체.결합찬정자료,차조삼유가시화기술재삼유공간중예측저층사체적공간분포,대대감소료지진상화분적다해성,제고료저층예측적정도화공작효솔.대화북유전만장지구선삼각주사체진행예측,재삼유공간중정세각화료사삼중단선삼각주사체적변계화공간전포,예측료유리저층적발육구,발현병락실료3개유리적암성권폐,부서찬탐적T12X、T47등정균획공업유류,효과흔호.
Conventional neural network technology for seismic waveform classification by using one single seismic attribute is very difficult to be used to predict seismic facies and sand body distribution in low signal and noisy ratio areas.Seisfacies multi-attribute volume classification technology is based on seismic wave theory,principal component analysis (PCA),hybrid classification method and self-organizing neural network technology,by using the principle of similarity to cluster analysis seismic attribute and also seismic facies are automatically analyzed.Thus a seismic facies classification volume is obtained.Integrated with well data,the seismic facies volume is analyzed in 3D visualization.It is better to predict reservoir sand body distribution in three-dimensional space and greatly reduce uncertainty caused by single attribute seismic facies analysis.This technology is used in Wanzhuang area,Huabei Oilfield.Fan delta sand body distribution is correctly described,three prospective lithologic reservoirs are predicted clearly.Based on these results,well T12X and T47 were drilled and encountered thicker oil pays,which proved the multi-attribute volume classification prediction results.