资源与生态学报(英文版)
資源與生態學報(英文版)
자원여생태학보(영문판)
JOURNAL OF RESOURCES AND ECOLOGY
2012年
3期
220-229
,共10页
戚晓鹏%魏良%Laurie BARKER%Akaki LEKIACHVILI%张兴有
慼曉鵬%魏良%Laurie BARKER%Akaki LEKIACHVILI%張興有
척효붕%위량%Laurie BARKER%Akaki LEKIACHVILI%장흥유
气温估计%县区数据%ArcGIS%SAS%协同克里金
氣溫估計%縣區數據%ArcGIS%SAS%協同剋裏金
기온고계%현구수거%ArcGIS%SAS%협동극리금
temperature estimation%county data%ArcGIS%SAS%cokriging
气温变化对人群健康有重要的影响.通过对美国县区人口加权的月平均温度的准确估计可以用于气温与人群健康行为以及疾病的关联关系研究,如基于以县区为单位的抽样或者报告数据.针对气温的估计,多数学者都采用ArcGIS软件,很少使用SAS这一统计软件.本文比较了两种地统计模型的性能,并在同一个CITGO平台上采用ArcGIS9.3和SAS9.2-工具软件估算全美48个州县区月平均温度.来自全美5435个气温监测站点2007年1-12月的平均温度和站点的海拔高度被用于估算县区人口中心点的温度,其中海拔数据是作为协变量.通过调整决定系数R2、均方误差、均方根误差和处理时间等指标来比较模型的效能.在ArcGIS中独立验证预测准确性在11个月中都达到90%以上,SAS中12个月均达到90%以上.与ArcGIS协同克里格相比,SAS协同克里格插值能获得更高的准确性和较低的偏差.两个软件包对于县区水平的气温估计值呈现正相关(调整R2在0.95-0.99之间);通过引入海拔高度作为协变量,使准确性和精确性都得以改善.两种方法对于美国县区层面的气温估计都是可靠的,但ArcGIS在空间数据前期处理和处理时间上的优势,尤其在涉及多年或者多个州的项目中是软件选择上的重要考虑.
氣溫變化對人群健康有重要的影響.通過對美國縣區人口加權的月平均溫度的準確估計可以用于氣溫與人群健康行為以及疾病的關聯關繫研究,如基于以縣區為單位的抽樣或者報告數據.針對氣溫的估計,多數學者都採用ArcGIS軟件,很少使用SAS這一統計軟件.本文比較瞭兩種地統計模型的性能,併在同一箇CITGO平檯上採用ArcGIS9.3和SAS9.2-工具軟件估算全美48箇州縣區月平均溫度.來自全美5435箇氣溫鑑測站點2007年1-12月的平均溫度和站點的海拔高度被用于估算縣區人口中心點的溫度,其中海拔數據是作為協變量.通過調整決定繫數R2、均方誤差、均方根誤差和處理時間等指標來比較模型的效能.在ArcGIS中獨立驗證預測準確性在11箇月中都達到90%以上,SAS中12箇月均達到90%以上.與ArcGIS協同剋裏格相比,SAS協同剋裏格插值能穫得更高的準確性和較低的偏差.兩箇軟件包對于縣區水平的氣溫估計值呈現正相關(調整R2在0.95-0.99之間);通過引入海拔高度作為協變量,使準確性和精確性都得以改善.兩種方法對于美國縣區層麵的氣溫估計都是可靠的,但ArcGIS在空間數據前期處理和處理時間上的優勢,尤其在涉及多年或者多箇州的項目中是軟件選擇上的重要攷慮.
기온변화대인군건강유중요적영향.통과대미국현구인구가권적월평균온도적준학고계가이용우기온여인군건강행위이급질병적관련관계연구,여기우이현구위단위적추양혹자보고수거.침대기온적고계,다수학자도채용ArcGIS연건,흔소사용SAS저일통계연건.본문비교료량충지통계모형적성능,병재동일개CITGO평태상채용ArcGIS9.3화SAS9.2-공구연건고산전미48개주현구월평균온도.래자전미5435개기온감측참점2007년1-12월적평균온도화참점적해발고도피용우고산현구인구중심점적온도,기중해발수거시작위협변량.통과조정결정계수R2、균방오차、균방근오차화처리시간등지표래비교모형적효능.재ArcGIS중독립험증예측준학성재11개월중도체도90%이상,SAS중12개월균체도90%이상.여ArcGIS협동극리격상비,SAS협동극리격삽치능획득경고적준학성화교저적편차.량개연건포대우현구수평적기온고계치정현정상관(조정R2재0.95-0.99지간);통과인입해발고도작위협변량,사준학성화정학성도득이개선.량충방법대우미국현구층면적기온고계도시가고적,단ArcGIS재공간수거전기처리화처리시간상적우세,우기재섭급다년혹자다개주적항목중시연건선택상적중요고필.
Temperature changes are known to have significant impacts on human health.Accurate estimates of population-weighted average monthly air temperature for US counties are needed to evaluate temperature's association with health behaviours and disease,which are sampled or reported at the county level and measured on a monthly-or 30-day-basis.Most reported temperature estimates were calculated using ArcGIS,relatively few used SAS.We compared the performance of geostatistical models to estimate population-weighted average temperature in each month for counties in 48 states using ArcGIS v9.3 and SAS v 9.2 on a CITGO platform.Monthly average temperature for Jan-Dec 2007 and elevation from 5435 weather stations were used to estimate the temperature at county population centroids.County estimates were produced with elevation as a covariate.Performance of models was assessed by comparing adjusted R2,mean squared error,root mean squared error,and processing time.Prediction accuracy for split validation was above 90% for 11 months in ArcGIS and all 12 months in SAS.Cokriging in SAS achieved higher prediction accuracy and lower estimation bias as compared to cokriging in ArcGIS.County-level estimates produced by both packages were positively correlated (adjusted R2 range=0.95 to 0.99); accuracy and precision improved with elevation as a covariate.Both methods from ArcGIS and SAS are reliable for U.S.county-level temperature estimates; However,ArcGIS's merits in spatial data pre-processing and processing time may be important considerations for software selection,especially for multi-year or multi-state projects.