材料保护
材料保護
재료보호
MATERIALS PROTECTION
2009年
7期
4-6,17
,共4页
刘春阳%林晓娉%王铁宝%张丽娟%王志平%丁昆英
劉春暘%林曉娉%王鐵寶%張麗娟%王誌平%丁昆英
류춘양%림효빙%왕철보%장려연%왕지평%정곤영
超音速微粒轰击%等离子喷涂%Ni基高温合金%热障涂层%抗氧化性能
超音速微粒轟擊%等離子噴塗%Ni基高溫閤金%熱障塗層%抗氧化性能
초음속미립굉격%등리자분도%Ni기고온합금%열장도층%항양화성능
supersonic fine particle bombarding%plasma spraying%Ni-based high-temporature alloy%thermal barrier coating%antiox-idation behavior
较长时间高温氧化,会使金属粘结层与热生长氧化物界面处贫铝,造成热喷涂陶瓷层失效.对金属粘结层进行超音速微粒轰击,可以增加铝扩散的浓度梯度,提高热障涂层的抗氧化能力.采用等离子喷涂(APS)在镍基高温合金GH99上制备了热障涂层,并对粘结层进行了超音速微粒轰击处理,研究了该处理工艺对粘结层显微结构及高温氧化行为的影响.结果表明:APS热障涂层经1 050 ℃、96 h氧化后.热生长氧化物层产生大量非保护性混合氧化物;超音速微粒轰击工艺使粘结层表层区域产生大量位错等缺陷,涂层经1 050 ℃、3 h氧化后进入稳态氧化期,同时出现Al在粘结层表层的富集,经1 050 ℃、196 h氧化后粘结层无加速氧化趋势,热障涂层的抗高温氧化性能得到提高.
較長時間高溫氧化,會使金屬粘結層與熱生長氧化物界麵處貧鋁,造成熱噴塗陶瓷層失效.對金屬粘結層進行超音速微粒轟擊,可以增加鋁擴散的濃度梯度,提高熱障塗層的抗氧化能力.採用等離子噴塗(APS)在鎳基高溫閤金GH99上製備瞭熱障塗層,併對粘結層進行瞭超音速微粒轟擊處理,研究瞭該處理工藝對粘結層顯微結構及高溫氧化行為的影響.結果錶明:APS熱障塗層經1 050 ℃、96 h氧化後.熱生長氧化物層產生大量非保護性混閤氧化物;超音速微粒轟擊工藝使粘結層錶層區域產生大量位錯等缺陷,塗層經1 050 ℃、3 h氧化後進入穩態氧化期,同時齣現Al在粘結層錶層的富集,經1 050 ℃、196 h氧化後粘結層無加速氧化趨勢,熱障塗層的抗高溫氧化性能得到提高.
교장시간고온양화,회사금속점결층여열생장양화물계면처빈려,조성열분도도자층실효.대금속점결층진행초음속미립굉격,가이증가려확산적농도제도,제고열장도층적항양화능력.채용등리자분도(APS)재얼기고온합금GH99상제비료열장도층,병대점결층진행료초음속미립굉격처리,연구료해처리공예대점결층현미결구급고온양화행위적영향.결과표명:APS열장도층경1 050 ℃、96 h양화후.열생장양화물층산생대량비보호성혼합양화물;초음속미립굉격공예사점결층표층구역산생대량위착등결함,도층경1 050 ℃、3 h양화후진입은태양화기,동시출현Al재점결층표층적부집,경1 050 ℃、196 h양화후점결층무가속양화추세,열장도층적항고온양화성능득도제고.
was prepared on Ni- based high- temperature alloy GH99 by at-mospheric plasma spraying (APS). The bonded coating was trea-ted by supersonic fine particle bombarding, which was carded out in relation to the effect on the microstructure and oxidation behav-ior of the TBC. It was found that a thermally grown oxide (TGO) layer composed of detrimental oxides was formed in APS- TBC specimens after 96 h thermal exposure at 1 050 ℃. After treating the bonded coating by supersonic fine particle bombarding, large quantities of dislocations were generated in the thermal barrier coating. In this case the coating reached steady- state oxidation after thermal exposure at 1 050 ℃ for 3 h, and Al was enriched atop the bonded coating. Subsequently, even after 196 h thermal exposure at 1 050 ℃, the bonded coating still retained steady-state oxidation, implying that the high temperature antioxidation behavior of the thermal barrier coating was effectively increased.