宇航学报
宇航學報
우항학보
JOURNAL OF ASTRONAUTICS
2009年
6期
2303-2307
,共5页
宫久路%谌德荣%曹旭平%弓宇
宮久路%諶德榮%曹旭平%弓宇
궁구로%심덕영%조욱평%궁우
高光谱图像%数据压缩%压缩误差%误差控制%奇异值分解
高光譜圖像%數據壓縮%壓縮誤差%誤差控製%奇異值分解
고광보도상%수거압축%압축오차%오차공제%기이치분해
Hyperspectral image%Data compression%Compression error%Error control%Singular value decomposition
提出了一种可以实时控制压缩误差的高光谱图像有损压缩算法.该算法对高光谱图像矩阵进行奇异值分解得到奇异值矩阵和奇异向量矩阵;用部分奇异值及其对应的奇异向量重构图像;根据测量系统精度要求确定量化因子并对重构图像与原始图像问的光谱误差进行量化;采用预测编码和算术编码对用于图像重构的奇异值及其对应奇异向量进行无损压缩;设计了非零值编码算法完成对重构误差的无损压缩.对Luna Lake和Low Alti-tude图像的仿真结果为:最大相对误差分别控制在O.44%和0.33%时,压缩比为41.5:1和24.6:1,信噪比为50.4 dB和47.8 dB.
提齣瞭一種可以實時控製壓縮誤差的高光譜圖像有損壓縮算法.該算法對高光譜圖像矩陣進行奇異值分解得到奇異值矩陣和奇異嚮量矩陣;用部分奇異值及其對應的奇異嚮量重構圖像;根據測量繫統精度要求確定量化因子併對重構圖像與原始圖像問的光譜誤差進行量化;採用預測編碼和算術編碼對用于圖像重構的奇異值及其對應奇異嚮量進行無損壓縮;設計瞭非零值編碼算法完成對重構誤差的無損壓縮.對Luna Lake和Low Alti-tude圖像的倣真結果為:最大相對誤差分彆控製在O.44%和0.33%時,壓縮比為41.5:1和24.6:1,信譟比為50.4 dB和47.8 dB.
제출료일충가이실시공제압축오차적고광보도상유손압축산법.해산법대고광보도상구진진행기이치분해득도기이치구진화기이향량구진;용부분기이치급기대응적기이향량중구도상;근거측량계통정도요구학정양화인자병대중구도상여원시도상문적광보오차진행양화;채용예측편마화산술편마대용우도상중구적기이치급기대응기이향량진행무손압축;설계료비령치편마산법완성대중구오차적무손압축.대Luna Lake화Low Alti-tude도상적방진결과위:최대상대오차분별공제재O.44%화0.33%시,압축비위41.5:1화24.6:1,신조비위50.4 dB화47.8 dB.
A novel algorithm for hyperspectral image compression is proposed in order to control compression error in the pro-cess of real- time image compression. In the first step, Singular Value Decomposition (SVD) of the original image matrix was computed and the singular values and singular vectors of the matrix were obtained; the image was then reconstructed with a smaller set of singular values and singular vectors. In the second step, the spectrum errors between the regional image and reconstructed image were calculated by subtracting the reconstructed image spectrum from the original image spectrum; the quantification for the spectrum errors could be obtained by dividing the maximum spectrum errors got from the first step with the acceptable error of the test system. Lastly, the singulars values and singular vectors for reeonstructing image were compressed by lossless predictive coding and arithmetic exiling, the quantified spectrum errors were also compressed by a novel lossless compression algorithm of non-zero element coding designed in this paper. The results of the simulation on the hyperspectral images of lama Lake and Low Altitude show that when the maximum relative errors are controUed to be 0.44% and 0.33% respectively, the compression ratios are 41.5:1 and 24.6:1, the SNRs are 50.4 dB and 47.8 dB.