玻璃钢/复合材料
玻璃鋼/複閤材料
파리강/복합재료
FIBER REINFORCED PLASTICS/COMPOSITES
2010年
1期
73-76,81
,共5页
玻璃钢%拉挤工艺%数值模拟%非稳态温度场%布拉格光栅光纤传感器
玻璃鋼%拉擠工藝%數值模擬%非穩態溫度場%佈拉格光柵光纖傳感器
파리강%랍제공예%수치모의%비은태온도장%포랍격광책광섬전감기
glass fiber reinforced plastic%pultrusion%numerical simulation%unsteady temperature field%fiber Bragg grating sensor
玻璃钢拉挤成型过程中其固化度和温度变化为强耦合关系.根据固化动力学和传热学理论,建立了非稳态温度场与固化动力学数学模型.通过示差扫描量热实验计算出模型中固化动力学参数.采用有限元与有限差分相结合的方法.依据ANSYS求解耦合场的间接耦合法,编制了计算程序,对拉挤工艺不同工况玻璃钢非稳态温度场和固化度进行数值模拟.采用特殊设计制作的铝毛细管封装的布拉格光栅光纤传感器,屏蔽了荷栽效应应变干扰,对玻璃钢温度场进行实时检测;采用索氏萃取实验测定玻璃钢制品固化度.实验表明,模拟与实验结果基本吻合.为避开繁多试凑性实验而进行工艺过程优化提供理论依据.
玻璃鋼拉擠成型過程中其固化度和溫度變化為彊耦閤關繫.根據固化動力學和傳熱學理論,建立瞭非穩態溫度場與固化動力學數學模型.通過示差掃描量熱實驗計算齣模型中固化動力學參數.採用有限元與有限差分相結閤的方法.依據ANSYS求解耦閤場的間接耦閤法,編製瞭計算程序,對拉擠工藝不同工況玻璃鋼非穩態溫度場和固化度進行數值模擬.採用特殊設計製作的鋁毛細管封裝的佈拉格光柵光纖傳感器,屏蔽瞭荷栽效應應變榦擾,對玻璃鋼溫度場進行實時檢測;採用索氏萃取實驗測定玻璃鋼製品固化度.實驗錶明,模擬與實驗結果基本吻閤.為避開繁多試湊性實驗而進行工藝過程優化提供理論依據.
파리강랍제성형과정중기고화도화온도변화위강우합관계.근거고화동역학화전열학이론,건립료비은태온도장여고화동역학수학모형.통과시차소묘량열실험계산출모형중고화동역학삼수.채용유한원여유한차분상결합적방법.의거ANSYS구해우합장적간접우합법,편제료계산정서,대랍제공예불동공황파리강비은태온도장화고화도진행수치모의.채용특수설계제작적려모세관봉장적포랍격광책광섬전감기,병폐료하재효응응변간우,대파리강온도장진행실시검측;채용색씨췌취실험측정파리강제품고화도.실험표명,모의여실험결과기본문합.위피개번다시주성실험이진행공예과정우화제공이론의거.
The temperature and degree of cure of glass fiber reinforced plastic(GFRP)are coupled during the pultrusion process.The unsteady temperature field and curing models were established on the basis of heat transferring and resin curing mechanism.The kinetic parameters of polymer matrix used for simulation were acquired from the differential scanning calorimeter scans.The finite element method and finite difference method were implemented to solve the coupling problem between temperature field and curing models;and the numerical simulation of temperature and degree of cure of GFRP was realized on the basis of ANSYS.The fiber Bragg grating sensor encapsulated in a metal capillary,was adopted to monitor the centerline temperature of GFRP.The final degree of cure was measured by Sorbitic extraction.It shows that the simulative results are in good agreement with the experimental ones.The simulative way will make the process optimization more feasible and convenient.