液晶与显示
液晶與顯示
액정여현시
CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS
2010年
3期
333-338
,共6页
赵淑云%孟志国%王文%郭海成
趙淑雲%孟誌國%王文%郭海成
조숙운%맹지국%왕문%곽해성
金属诱导晶化%规则排列连续晶畴%薄膜晶体管%低温多晶硅
金屬誘導晶化%規則排列連續晶疇%薄膜晶體管%低溫多晶硅
금속유도정화%규칙배렬련속정주%박막정체관%저온다정규
metal induced crystallization%defined-grain polycrystalline%thin film transistor%LTPS
介绍了一种新的金属诱导多晶硅技术.该技术的核心是预设规则化晶核定位孔和镍源补充孔与溶液浸蘸技术的结合.以定位孔为晶化的起始点,晶化过程中消耗的镍可通过分布在周边的镍源补充孔中的镍给予补充.这样可以大大降低晶核定位孔中的初始镍量,使整个多晶硅薄膜中不存在明显的高镍含量区.即包括晶核定位孔、镍源补充孔在内的整个多晶硅薄膜区域内,能形成连续晶畴的多晶硅薄膜,都可作为高质量TFT的有源层.根据晶核定位孔分布形式的不同,可以设计成规则、重复的分布形式,获得正六边形的蜂巢晶体薄膜和准平行晶带晶体薄膜.这些规则形成的晶畴形状与尺寸相同,可准确地控制晶化的过程,具有晶化时间的高可控性和工艺过程的高稳定性,故而适合于工业化生产的要求.利用些技术,当温度为590℃时,可将晶化时间缩短至2 h之内.用这种多晶硅薄膜为有源层,所得多晶硅TFT的场效应迁移率典型值为~55 cm2/V·s,亚阈值斜摆幅为0.6 V/dec,开关电流比为~1×107,开启电压为-3 V.
介紹瞭一種新的金屬誘導多晶硅技術.該技術的覈心是預設規則化晶覈定位孔和鎳源補充孔與溶液浸蘸技術的結閤.以定位孔為晶化的起始點,晶化過程中消耗的鎳可通過分佈在週邊的鎳源補充孔中的鎳給予補充.這樣可以大大降低晶覈定位孔中的初始鎳量,使整箇多晶硅薄膜中不存在明顯的高鎳含量區.即包括晶覈定位孔、鎳源補充孔在內的整箇多晶硅薄膜區域內,能形成連續晶疇的多晶硅薄膜,都可作為高質量TFT的有源層.根據晶覈定位孔分佈形式的不同,可以設計成規則、重複的分佈形式,穫得正六邊形的蜂巢晶體薄膜和準平行晶帶晶體薄膜.這些規則形成的晶疇形狀與呎吋相同,可準確地控製晶化的過程,具有晶化時間的高可控性和工藝過程的高穩定性,故而適閤于工業化生產的要求.利用些技術,噹溫度為590℃時,可將晶化時間縮短至2 h之內.用這種多晶硅薄膜為有源層,所得多晶硅TFT的場效應遷移率典型值為~55 cm2/V·s,亞閾值斜襬幅為0.6 V/dec,開關電流比為~1×107,開啟電壓為-3 V.
개소료일충신적금속유도다정규기술.해기술적핵심시예설규칙화정핵정위공화얼원보충공여용액침잠기술적결합.이정위공위정화적기시점,정화과정중소모적얼가통과분포재주변적얼원보충공중적얼급여보충.저양가이대대강저정핵정위공중적초시얼량,사정개다정규박막중불존재명현적고얼함량구.즉포괄정핵정위공、얼원보충공재내적정개다정규박막구역내,능형성련속정주적다정규박막,도가작위고질량TFT적유원층.근거정핵정위공분포형식적불동,가이설계성규칙、중복적분포형식,획득정륙변형적봉소정체박막화준평행정대정체박막.저사규칙형성적정주형상여척촌상동,가준학지공제정화적과정,구유정화시간적고가공성화공예과정적고은정성,고이괄합우공업화생산적요구.이용사기술,당온도위590℃시,가장정화시간축단지2 h지내.용저충다정규박막위유원층,소득다정규TFT적장효응천이솔전형치위~55 cm2/V·s,아역치사파폭위0.6 V/dec,개관전류비위~1×107,개계전압위-3 V.
A new technique has been proposed to define and control the grain boundaries and domains of low temperature polycrystalline silicon (LTPS) films. It can be realized by combination of the solution process and the provision of nucleation sites (NS) and supplemental sites (SS). As a result, the crystallized poly-Si film has a much lower nickel concentration as compared to traditional metal induced lateral crystallization (MILC) poly-Si. High performance TFTs are obtained regardless of the position of the grain boundaries. Different shapes of domains can be obtained corresponding to different distributions of the NS and SS. Among the optimal designs, a honeycomb-like structure and a unidirectional structure are the most typical and practical. With the repeatedly regular distribution of the NS and the SS, domains of the same shape and size can be achieved. This process is precisely controllable and the crystallization time can be reduced to about 2 h at the annealing temperature of 590 ℃. The fabricated P-channel defined-grain (DG) poly-Si TFTs exhibited a maximum field effect mobility (μFE of ~55 cm2/V·s, a subthreshold swing (S) of~0.6 V/dec and a threshold voltage (Vth) of-3 V. The ratio of on-state to off-state drain currents is ~1×107.