大学数学
大學數學
대학수학
COLLEGE MATHEMATICS
2012年
1期
61-66
,共6页
数值求积公式%代数精度%求积余项%求积系数%求积节点%双侧逼近
數值求積公式%代數精度%求積餘項%求積繫數%求積節點%雙側逼近
수치구적공식%대수정도%구적여항%구적계수%구적절점%쌍측핍근
numerical quadrature formulae%algebraic degree of exactness%quadrature error%two-sided approximation
通过分析基本数值求积公式的双侧逼近现象,利用加权平均的方法构造出了比原来求积公式至少高二次代数精度新的混合型求积公式,使得积分近似值精度得到大幅度提高,并给出应用它们求数值积分的具体实例.
通過分析基本數值求積公式的雙側逼近現象,利用加權平均的方法構造齣瞭比原來求積公式至少高二次代數精度新的混閤型求積公式,使得積分近似值精度得到大幅度提高,併給齣應用它們求數值積分的具體實例.
통과분석기본수치구적공식적쌍측핍근현상,이용가권평균적방법구조출료비원래구적공식지소고이차대수정도신적혼합형구적공식,사득적분근사치정도득도대폭도제고,병급출응용타문구수치적분적구체실례.
By investigating the two-sided approximation phenomenon of some basic numerical quadrature formulae, some new numerical quadrature formulae are proposed. And it is proved that the algebraic degrees of these new formulae are at least more 2 than that of the old formulae. Therefore the accuracy of new numerical quadrature formulae is greatly improved. At the end, some numerical examples are given.