纯粹数学与应用数学
純粹數學與應用數學
순수수학여응용수학
PURE AND APPLIED MATHEMATICS
2011年
4期
450-458
,共9页
边值问题%静态梁方程%Arzela-Ascoli定理
邊值問題%靜態樑方程%Arzela-Ascoli定理
변치문제%정태량방정%Arzela-Ascoli정리
boundary value problem%elastic beam equation%Arzela-Ascoli theorem
运用Leray—Schauder拓扑理论,证明了广义静态梁方程和静态梁方程非负解的存在性,仅要求非线性项f在原点的某个邻域满足一定的符号条件,突破了以往对非线性项f的增长性限制.所获结果对工程设计具有重要的理论意义和实用价值.
運用Leray—Schauder拓撲理論,證明瞭廣義靜態樑方程和靜態樑方程非負解的存在性,僅要求非線性項f在原點的某箇鄰域滿足一定的符號條件,突破瞭以往對非線性項f的增長性限製.所穫結果對工程設計具有重要的理論意義和實用價值.
운용Leray—Schauder탁복이론,증명료엄의정태량방정화정태량방정비부해적존재성,부요구비선성항f재원점적모개린역만족일정적부호조건,돌파료이왕대비선성항f적증장성한제.소획결과대공정설계구유중요적이론의의화실용개치.
In this paper, we proved the existence of nonegative solutions for nonlinear elastic beam equations by applying Leray-Schauder theory. Here only the condition is required that nonlinear function f satisfies certain sign conditions for a neighborhood of origin of coordinates, which breaks through previous growth restrictions on f.