计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2010年
7期
185-186,189
,共3页
模式识别%多类分类%最大间隔%超椭球
模式識彆%多類分類%最大間隔%超橢毬
모식식별%다류분류%최대간격%초타구
pattern recognition%multi-class classification%maximal margin%hyper-ellipsoid
针对多类分类问题中现有算法精度不高的问题,基于一类分类马氏椭球学习机,提出一种最大间隔椭球形多类分类算法,将每一类数据用超椭球来界定,数据空间由若干个超椭球组成,每个超椭球包围一类样本点,并以最大间隔排除不属于该类的样本点,该算法同时考虑了不同类样本点的协方差矩阵,即分布信息.真实数据上的实验结果表明该方法能提高分类精度.
針對多類分類問題中現有算法精度不高的問題,基于一類分類馬氏橢毬學習機,提齣一種最大間隔橢毬形多類分類算法,將每一類數據用超橢毬來界定,數據空間由若榦箇超橢毬組成,每箇超橢毬包圍一類樣本點,併以最大間隔排除不屬于該類的樣本點,該算法同時攷慮瞭不同類樣本點的協方差矩陣,即分佈信息.真實數據上的實驗結果錶明該方法能提高分類精度.
침대다류분류문제중현유산법정도불고적문제,기우일류분류마씨타구학습궤,제출일충최대간격타구형다류분류산법,장매일류수거용초타구래계정,수거공간유약간개초타구조성,매개초타구포위일류양본점,병이최대간격배제불속우해류적양본점,해산법동시고필료불동류양본점적협방차구진,즉분포신식.진실수거상적실험결과표명해방법능제고분류정도.
For the problem of low accuracy in existing multi-class classification algorithm, based on Mahalanobis ellipsoidal learning machine for one class classification, a maximal margin ellipsoid-shaped multi-class classification algorithm is proposed, which bounds each class data using a hyper-ellipsoid and the data space is composed of several hyper-ellipsoids. Each hyper-ellipsoid encloses all samples from one class and at the same time excludes all samples from the rest class with maximal margin. In addition, the covariance matrix, i.e., the distribution information of examples from different classes is considered. Experimental results on real data sets show that the method can improve accuracy for classification.