西南交通大学学报
西南交通大學學報
서남교통대학학보
JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY
2010年
2期
296-301
,共6页
灰关联测度%聚类分析%层次聚类%聚类有效性指标
灰關聯測度%聚類分析%層次聚類%聚類有效性指標
회관련측도%취류분석%층차취류%취류유효성지표
grey relational measure%clustering analysis%hierarchical clustering%clustering validityindex
为估计数据集的聚类数目及获得较好的聚类性能,提出了一种基于灰关联测度的分裂式层次聚类算法.该算法用灰关联测度衡最数据对象之间的相似程度,以基于密度扩展的方式自顶向下分裂成不同层次的数据集划分;然后,根据灰关联测度定义聚类有效性指标;最后将有效性指标曲线极值点对应的聚类划分用于估计最佳聚类数目.实际数据和合成数据集的实验表明,与FCM聚类相比,该算法的聚类正确率平均提高3.7%,并且能够识别任意形状的簇.
為估計數據集的聚類數目及穫得較好的聚類性能,提齣瞭一種基于灰關聯測度的分裂式層次聚類算法.該算法用灰關聯測度衡最數據對象之間的相似程度,以基于密度擴展的方式自頂嚮下分裂成不同層次的數據集劃分;然後,根據灰關聯測度定義聚類有效性指標;最後將有效性指標麯線極值點對應的聚類劃分用于估計最佳聚類數目.實際數據和閤成數據集的實驗錶明,與FCM聚類相比,該算法的聚類正確率平均提高3.7%,併且能夠識彆任意形狀的簇.
위고계수거집적취류수목급획득교호적취류성능,제출료일충기우회관련측도적분렬식층차취류산법.해산법용회관련측도형최수거대상지간적상사정도,이기우밀도확전적방식자정향하분렬성불동층차적수거집화분;연후,근거회관련측도정의취류유효성지표;최후장유효성지표곡선겁치점대응적취류화분용우고계최가취류수목.실제수거화합성수거집적실험표명,여FCM취류상비,해산법적취류정학솔평균제고3.7%,병차능구식별임의형상적족.
To estimate cluster number and achieve a better clustering performance,a divisive hierarchical clustering algorithm based on grey relational measure was proposed.In this algorithm,the grey relational measure is used to measure the degree of similarity between data sets.On the basis of the way of density-based extension,the algorithm divisively generates hierarchical partitions of dataset.And then the clustering validity index is defined based on the grey relational measure.The partitions corresponding to the extremum of the validity index curve are used to estimate the number of clusters finally.Computer simulation on real and synthesis data sets shows that compared with the FCM (fuzzy C-means)algorithm,the proposed algorithm has a 3.7%improvement in average clustering correct rate and is good for arbitrary-shaped clusters.