固体力学学报
固體力學學報
고체역학학보
ACTA MECHANICA SOLIDA SINICA
2009年
6期
609-613
,共5页
Nonlocal弹性理论%Hamilton原理%变分法%对偶方程
Nonlocal彈性理論%Hamilton原理%變分法%對偶方程
Nonlocal탄성이론%Hamilton원리%변분법%대우방정
Nonlocal elasticity%Hamilton framework%variational principle%dual equations
基于Eringen提出的Nonlocal线弹性理论的微分形式本构关系,导出了相应的能量密度表达式,进而得到二维Nonlocal线弹性理论的变分原理.利用变分原理导出了对偶平衡方程和相应的边界条件.进而给出了非局部动力问题的Lagrange函数,并引入对偶变量和Hamilton函数,得到了对偶体系下的变分方程.在Hamilton体系下,通过变分得到了二维Nonlocal线弹性理论的对偶平衡方程和相应的边界条件.
基于Eringen提齣的Nonlocal線彈性理論的微分形式本構關繫,導齣瞭相應的能量密度錶達式,進而得到二維Nonlocal線彈性理論的變分原理.利用變分原理導齣瞭對偶平衡方程和相應的邊界條件.進而給齣瞭非跼部動力問題的Lagrange函數,併引入對偶變量和Hamilton函數,得到瞭對偶體繫下的變分方程.在Hamilton體繫下,通過變分得到瞭二維Nonlocal線彈性理論的對偶平衡方程和相應的邊界條件.
기우Eringen제출적Nonlocal선탄성이론적미분형식본구관계,도출료상응적능량밀도표체식,진이득도이유Nonlocal선탄성이론적변분원리.이용변분원리도출료대우평형방정화상응적변계조건.진이급출료비국부동력문제적Lagrange함수,병인입대우변량화Hamilton함수,득도료대우체계하적변분방정.재Hamilton체계하,통과변분득도료이유Nonlocal선탄성이론적대우평형방정화상응적변계조건.
The energy density expression was deduced using the constitutive equations in differential form of nonlocal elasticity, proposed by Eringen, and the corresponding variational principle of two-dimensional nonlocal linear elasticity was presented. Then, the equilibrium equations and the relevant boundary conditions were obtained from the established variational principle and the correlative Lagrangian for nonlocal dynamic problems was presented. After introducing Hamiltonian and duality variables, the variational principle was rewritten in the duality system, the duality equilibrium equations and relevant boundary conditions of two-dimensional nonlocal linear elasticity were derived from the variational equation in duality form.