西安交通大学学报
西安交通大學學報
서안교통대학학보
JOURNAL OF XI'AN JIAOTONG UNIVERSITY
2010年
4期
114-118
,共5页
典型相关分析%独立成分分析%脑电%肌电%伪差去除
典型相關分析%獨立成分分析%腦電%肌電%偽差去除
전형상관분석%독립성분분석%뇌전%기전%위차거제
canonical correlation analysis%independent component analysis%EEG%EMG%arti-facts removal
为了在线去除脑电信号中的肌电伪差,使用典型相关分析方法,分析了大量被肌电干扰和未被干扰的脑电(EEG)信号,得出了一个合理的自相关阈值.在时域上,肌电伪差和一般的噪声信号比较类似,有比较小的自相关值,在去除肌电伪差时,凡自相关值低于此值的分解成分被识别为肌电伪差.该方法很好地利用了这个特点,将肌电伪差分量与潜在大脑信号分离,然后依据剩下的分解成分重建"干净"的EEG信号.实验结果表明,典型相关分析法在去除肌电伪差时优于独立成分分析法,结合提出的自相关阈值在有效去除肌电伪差的同时,又能较好地保持潜在的大脑信号不变.
為瞭在線去除腦電信號中的肌電偽差,使用典型相關分析方法,分析瞭大量被肌電榦擾和未被榦擾的腦電(EEG)信號,得齣瞭一箇閤理的自相關閾值.在時域上,肌電偽差和一般的譟聲信號比較類似,有比較小的自相關值,在去除肌電偽差時,凡自相關值低于此值的分解成分被識彆為肌電偽差.該方法很好地利用瞭這箇特點,將肌電偽差分量與潛在大腦信號分離,然後依據剩下的分解成分重建"榦淨"的EEG信號.實驗結果錶明,典型相關分析法在去除肌電偽差時優于獨立成分分析法,結閤提齣的自相關閾值在有效去除肌電偽差的同時,又能較好地保持潛在的大腦信號不變.
위료재선거제뇌전신호중적기전위차,사용전형상관분석방법,분석료대량피기전간우화미피간우적뇌전(EEG)신호,득출료일개합리적자상관역치.재시역상,기전위차화일반적조성신호비교유사,유비교소적자상관치,재거제기전위차시,범자상관치저우차치적분해성분피식별위기전위차.해방법흔호지이용료저개특점,장기전위차분량여잠재대뇌신호분리,연후의거잉하적분해성분중건"간정"적EEG신호.실험결과표명,전형상관분석법재거제기전위차시우우독립성분분석법,결합제출적자상관역치재유효거제기전위차적동시,우능교호지보지잠재적대뇌신호불변.
To remove electromyography (EMG) artifacts from electroencephalogram (EEG) signals real-time, canonical correlation analysis (CCA) is adopted. By analyzing a number of clean' and contaminated electroencephalogram (EEG) signals using CCA, a reasonable correlation threshold is obtained. The EMG artifacts are similar to the common noise in time domain. Hence, the EMG artifacts components obtained by CCA have relatively lower correlation than non-EMG artifacts. When CCA is used to remove EMG artifacts from EEG signals, the components whose correlation value is lower than the threshold are identified as EMG artifacts, and then the 'clean' EEG signals can be reconstructed by the remnant components. The experimental results show that CCA outperforms ICA for removing EMG artifacts. Moreover, combining with the presented threshold, CCA enables to effectively remove EMG artifacts with little distortion of the underlying brain activity signals in real-time.