中国铁道科学
中國鐵道科學
중국철도과학
CHINA RAILWAY SCIENCE
2010年
2期
45-49
,共5页
王中文%朱宏平%方秦汉%顾金钧%陈儒发
王中文%硃宏平%方秦漢%顧金鈞%陳儒髮
왕중문%주굉평%방진한%고금균%진유발
拉索减振%黏性剪切阻尼器%对数衰减率%斜拉桥
拉索減振%黏性剪切阻尼器%對數衰減率%斜拉橋
랍색감진%점성전절조니기%대수쇠감솔%사랍교
Vibration reduction of stayed-cable%Viscous shearing damper%Logarithmic decrement ratio%Cable-stayed bridge
运用福斯(Foss)迭代法求解设置黏性剪切阻尼器(VSD)减振拉索的振动方程,得到复特征值和对数衰减率.以对数衰减率大于等于0.03为目标函数,对杭州湾跨海大桥北航道桥斜拉索减振用VSD进行优化没计,并对安装VSD的减振效果进行分析.结果表明:减振拉索的每阶模念均有对应的VSD最优插板面积,高阶模态的最优插板面积小于低阶模态,高阶模态的对数衰减率受插板而积的影响比低阶模态大;在不考虑其他因素条件下插板而积大于150 cm~2时便可有效抑制斜拉索的各种风致振动;高阶模态的最大对数衰减率所对应的温度高于低模态最大对数衰减率所对应的温度,低温时低阶模态的对数衰减率大于高阶模态的对数衰减率,温度较高时高阶模态的对数衰减率大于低阶模态的对数衰减率.杭州湾跨海大桥北航道桥斜拉索安装VSD后,对数衰减率从0.015~0.019 6提高到0.03~0.11,有效地减小了斜拉索的各种风致振动,达到了减振效果及设计目标.
運用福斯(Foss)迭代法求解設置黏性剪切阻尼器(VSD)減振拉索的振動方程,得到複特徵值和對數衰減率.以對數衰減率大于等于0.03為目標函數,對杭州灣跨海大橋北航道橋斜拉索減振用VSD進行優化沒計,併對安裝VSD的減振效果進行分析.結果錶明:減振拉索的每階模唸均有對應的VSD最優插闆麵積,高階模態的最優插闆麵積小于低階模態,高階模態的對數衰減率受插闆而積的影響比低階模態大;在不攷慮其他因素條件下插闆而積大于150 cm~2時便可有效抑製斜拉索的各種風緻振動;高階模態的最大對數衰減率所對應的溫度高于低模態最大對數衰減率所對應的溫度,低溫時低階模態的對數衰減率大于高階模態的對數衰減率,溫度較高時高階模態的對數衰減率大于低階模態的對數衰減率.杭州灣跨海大橋北航道橋斜拉索安裝VSD後,對數衰減率從0.015~0.019 6提高到0.03~0.11,有效地減小瞭斜拉索的各種風緻振動,達到瞭減振效果及設計目標.
운용복사(Foss)질대법구해설치점성전절조니기(VSD)감진랍색적진동방정,득도복특정치화대수쇠감솔.이대수쇠감솔대우등우0.03위목표함수,대항주만과해대교북항도교사랍색감진용VSD진행우화몰계,병대안장VSD적감진효과진행분석.결과표명:감진랍색적매계모념균유대응적VSD최우삽판면적,고계모태적최우삽판면적소우저계모태,고계모태적대수쇠감솔수삽판이적적영향비저계모태대;재불고필기타인소조건하삽판이적대우150 cm~2시편가유효억제사랍색적각충풍치진동;고계모태적최대대수쇠감솔소대응적온도고우저모태최대대수쇠감솔소대응적온도,저온시저계모태적대수쇠감솔대우고계모태적대수쇠감솔,온도교고시고계모태적대수쇠감솔대우저계모태적대수쇠감솔.항주만과해대교북항도교사랍색안장VSD후,대수쇠감솔종0.015~0.019 6제고도0.03~0.11,유효지감소료사랍색적각충풍치진동,체도료감진효과급설계목표.
Using a Foss iterative method, a fundamental function was solved for cable-damp vibration, and then the complex eigenvalues and logarithmic decrement ratios were obtained. Setting an objective function as a logarithmic decrement ratio equal or greater than 0. 03, the parameters were optimized for a viscous shearing damper (VSD) installed on the northern waterway bridge of Hangzhou Bay sea-crossing bridge. Based on parameter optimization, the effect for the vibration suppression was analyzed after the installation of VSD on the Bridge. From the analysis of experimental data, it can be noted that the logarithmic decrement ratio is changed with the location of VSD installed. It is also shown that one reasonable value of an inserted plank in area can be gained in each mode of iteration. Under no consideration of other factors, the wind-induced vibration of cables can be effectively suppressed, if the area of inserted planks for VSD is greater than 150 cm~2. Considering the effect of temperature, it is noted that the ratio comes to be greater with temperature gradually increasing to the maximum. However, the ratio is decreased after the temperature reaches the maximum. In the test of VSD installed on various cables of the bridge, the logarithmic decrement ratio increased from 0. 015~0. 019 6 to 0. 03~0. 11. The conclusion can thus be drawn that the VSD can effectively reduce the cable vibration, which can achieve the damping effect and the design goal.