固体火箭技术
固體火箭技術
고체화전기술
JOURNAL OF SOLID ROCKET TECHNOLOGY
2010年
1期
54-57,67
,共5页
等离子体%圆柱形霍尔推力器%磁流体动力学%龙格-库塔方法
等離子體%圓柱形霍爾推力器%磁流體動力學%龍格-庫塔方法
등리자체%원주형곽이추력기%자류체동역학%룡격-고탑방법
plasma%cylindrical Hall thruster%magnetohydrodynamics (MHD)%Runge-Kutta method
利用一维磁流体动力学模型,对圆柱形霍尔推力器的放电等离子体进行了数值模拟.考虑了等离子体的电离、中和、碰撞、玻姆扩散及阳极鞘层的影响,由龙格一库塔方法得到离子速度、离子数密度、电子的温度等分布,其与实验结果有很好的一致性.经分析可知,此分布与电磁场的分布、粒子碰撞及电子阻抗等因素有关,并分析了电子温度分布、电子速度与电磁场的关系.结果表明,离子数密度沿通道方向增加,但在出口附近略有下降;而中性粒子数密度逐渐降低;离子速度在出口达到最大值,电子速度在下游有较大的梯度分布.
利用一維磁流體動力學模型,對圓柱形霍爾推力器的放電等離子體進行瞭數值模擬.攷慮瞭等離子體的電離、中和、踫撞、玻姆擴散及暘極鞘層的影響,由龍格一庫塔方法得到離子速度、離子數密度、電子的溫度等分佈,其與實驗結果有很好的一緻性.經分析可知,此分佈與電磁場的分佈、粒子踫撞及電子阻抗等因素有關,併分析瞭電子溫度分佈、電子速度與電磁場的關繫.結果錶明,離子數密度沿通道方嚮增加,但在齣口附近略有下降;而中性粒子數密度逐漸降低;離子速度在齣口達到最大值,電子速度在下遊有較大的梯度分佈.
이용일유자류체동역학모형,대원주형곽이추력기적방전등리자체진행료수치모의.고필료등리자체적전리、중화、팽당、파모확산급양겁초층적영향,유룡격일고탑방법득도리자속도、리자수밀도、전자적온도등분포,기여실험결과유흔호적일치성.경분석가지,차분포여전자장적분포、입자팽당급전자조항등인소유관,병분석료전자온도분포、전자속도여전자장적관계.결과표명,리자수밀도연통도방향증가,단재출구부근략유하강;이중성입자수밀도축점강저;리자속도재출구체도최대치,전자속도재하유유교대적제도분포.
The plasma inside the cylindrical Hall thruster was simulated by using one-dimension magnetohydrodynamic(MHD) model. Based on considering some influence factors, i. e. the plasma ionization, neutralization, collision, Bohm diffusion and anode sheath etc. were considered. The distributions of ion speed, ion number density and electron temperature, which were coincident with the experimental results, were obtained by means of Runge-Kutta method. These distributions are relevant to electromagnetic distribution, collision and electronic impedance. Finally, the relation of electron temperature distribution and velocity with magnetic field was analyzed. The results show that the ion number density increases, but it drops near exit; the neutral particle number densi-ty gradually reduces in the channel;the ion speed reaches the maximum at exit and the electron velocity has the great gradient distri-bution in the downstream.