稀有金属材料与工程
稀有金屬材料與工程
희유금속재료여공정
RARE METAL MATERIALS AND ENGINEERNG
2011年
2期
215-219
,共5页
周泽渊%于淑湘%林媛%张铭%蔡韩辉%商洪涛%何文喜
週澤淵%于淑湘%林媛%張銘%蔡韓輝%商洪濤%何文喜
주택연%우숙상%림원%장명%채한휘%상홍도%하문희
纳米Ag%单晶枝晶%AgNO3
納米Ag%單晶枝晶%AgNO3
납미Ag%단정지정%AgNO3
nanostructured Ag%dendrite%AgNO3
采用Zn置换AgN03溶液的方法制备具有不同形貌和结构的纳米AS,研究AgNO<,3>溶液的浓度对纳米Ag树枝生长速率、形貌和结构的影响.实验结果表明,纳米Ag树枝生长速率、形貌和结构主要取决于AgNO<,3>溶液的浓度和反应时间.纳米Ag树枝生长速率主要取决于AgNO<,3>溶液的浓度,浓度越高,生长速率越大.当AgNO<,3>溶液的浓度为5 mmol/L,反应初期的产物为Ag分形.随着时间延长,Ag分形转变为由纳米颗粒聚集而形成Ag枝晶.最后转变为单晶.当AgNO<,3>溶液浓度在20~100 mmol/L时,反应的产物均为.Ag枝晶,但加mmol/L以下浓度溶液中生成的Ag枝晶由纳米晶粒组成,而60 mmol/L以上浓度溶液中生成的Ag枝晶为单晶.通过控制AgNO<,3>溶液的浓度和反应时间,可制备具有不同形貌和结构的纳米Ag.
採用Zn置換AgN03溶液的方法製備具有不同形貌和結構的納米AS,研究AgNO<,3>溶液的濃度對納米Ag樹枝生長速率、形貌和結構的影響.實驗結果錶明,納米Ag樹枝生長速率、形貌和結構主要取決于AgNO<,3>溶液的濃度和反應時間.納米Ag樹枝生長速率主要取決于AgNO<,3>溶液的濃度,濃度越高,生長速率越大.噹AgNO<,3>溶液的濃度為5 mmol/L,反應初期的產物為Ag分形.隨著時間延長,Ag分形轉變為由納米顆粒聚集而形成Ag枝晶.最後轉變為單晶.噹AgNO<,3>溶液濃度在20~100 mmol/L時,反應的產物均為.Ag枝晶,但加mmol/L以下濃度溶液中生成的Ag枝晶由納米晶粒組成,而60 mmol/L以上濃度溶液中生成的Ag枝晶為單晶.通過控製AgNO<,3>溶液的濃度和反應時間,可製備具有不同形貌和結構的納米Ag.
채용Zn치환AgN03용액적방법제비구유불동형모화결구적납미AS,연구AgNO<,3>용액적농도대납미Ag수지생장속솔、형모화결구적영향.실험결과표명,납미Ag수지생장속솔、형모화결구주요취결우AgNO<,3>용액적농도화반응시간.납미Ag수지생장속솔주요취결우AgNO<,3>용액적농도,농도월고,생장속솔월대.당AgNO<,3>용액적농도위5 mmol/L,반응초기적산물위Ag분형.수착시간연장,Ag분형전변위유납미과립취집이형성Ag지정.최후전변위단정.당AgNO<,3>용액농도재20~100 mmol/L시,반응적산물균위.Ag지정,단가mmol/L이하농도용액중생성적Ag지정유납미정립조성,이60 mmol/L이상농도용액중생성적Ag지정위단정.통과공제AgNO<,3>용액적농도화반응시간,가제비구유불동형모화결구적납미Ag.
Nanostructured Ag with different morphologies and structures was prepared by replacement reaction(Zn versus AgNO<,3>).The influence of AgNO<,3> concentration on the growth speed, the morphology and the structure of the nanostructured Ag was investigated. Experimental results show that the growth speed, morphologies and structures of the nanostructured Ag strongly depend on AgNO<,3> concentration and reaction time. The growth speed is mainly dependent on the AgNO<,3> concentration; the higher the concentration, the faster the growth speed. When the AgNO<,3> concentration is 5 mmol/L, Ag fractal forms at the beginning stage,but the fractal transforms to dendrite consisting of nanoparticles and to monocrystal at last as the reaction proceeds. When the concentration is in the range of 20-100 retool/L, the products are all Ag dendrites, but the dendrites consist of nanoparticles when the concentration is below 40 mmol/L while they are monocrystal when the concentration is above 60 mmol/L. Ag nanostructures with different morphologies and structures can be prepared by controlling AgNO<,3> concentration and reaction time.