大地测量与地球动力学
大地測量與地毬動力學
대지측량여지구동역학
JOURNAL OF GEODESY AND GEODYNAMICS
2010年
2期
95-98
,共4页
支持向量机%混沌优化%粒子群优化%地形改正%高程异常
支持嚮量機%混沌優化%粒子群優化%地形改正%高程異常
지지향량궤%혼돈우화%입자군우화%지형개정%고정이상
SVM%chaos optimization%PSO%terrain correction%height anomaly
研究混沌粒子群支持向量机在GPS高程拟合中的应用,考虑地形起伏对高程转换的影响,引入地形改正量构建新的支持向量机训练模型,并针对支持向量机的参数人为选择的盲目性,将混沌粒子群优化理论用于SVM参数的选取,并与传统的拟合算法如二次曲面法、多面函数法和BP神经网络法的比较结果表明其精度更优.
研究混沌粒子群支持嚮量機在GPS高程擬閤中的應用,攷慮地形起伏對高程轉換的影響,引入地形改正量構建新的支持嚮量機訓練模型,併針對支持嚮量機的參數人為選擇的盲目性,將混沌粒子群優化理論用于SVM參數的選取,併與傳統的擬閤算法如二次麯麵法、多麵函數法和BP神經網絡法的比較結果錶明其精度更優.
연구혼돈입자군지지향량궤재GPS고정의합중적응용,고필지형기복대고정전환적영향,인입지형개정량구건신적지지향량궤훈련모형,병침대지지향량궤적삼수인위선택적맹목성,장혼돈입자군우화이론용우SVM삼수적선취,병여전통적의합산법여이차곡면법、다면함수법화BP신경망락법적비교결과표명기정도경우.
The application of chaos particle swarm support vector machine in GPS height fitting is studied. Taking the impact of terrain on the height conversion into account, the terrain correction is introduced to the support vector machine model. Considering the blindness of man-made choice of parameters of SVM, a chaos particle swarm optimization theory is used to select the parameters of SVM. Compared with the traditional fitting methods, such as polynomial curved surface, multi-face function BP neural network, this method is better.