大学数学
大學數學
대학수학
COLLEGE MATHEMATICS
2011年
6期
96-99
,共4页
花小琴%张大凯%胥德平
花小琴%張大凱%胥德平
화소금%장대개%서덕평
色散方程%组合差商法%隐格式%半显格式%收敛性
色散方程%組閤差商法%隱格式%半顯格式%收斂性
색산방정%조합차상법%은격식%반현격식%수렴성
dispersive equation%combined difference solution semi-explicit difference schemes,implicit scheme%stability
对色散方程ut=auxxx的初边值问题,构造了两组带参数绝对稳定两层四点去心隐式差分格式,其截断误差为0(τ+h^2).若适当选取参数,格式的精确度可高达0(τ+h^3).若特殊的令某个节点前的系数为0,则得到二阶的半显格式.最后的数例验证了理论分析的正确性.这是两组灵活、实用的差分格式.
對色散方程ut=auxxx的初邊值問題,構造瞭兩組帶參數絕對穩定兩層四點去心隱式差分格式,其截斷誤差為0(τ+h^2).若適噹選取參數,格式的精確度可高達0(τ+h^3).若特殊的令某箇節點前的繫數為0,則得到二階的半顯格式.最後的數例驗證瞭理論分析的正確性.這是兩組靈活、實用的差分格式.
대색산방정ut=auxxx적초변치문제,구조료량조대삼수절대은정량층사점거심은식차분격식,기절단오차위0(τ+h^2).약괄당선취삼수,격식적정학도가고체0(τ+h^3).약특수적령모개절점전적계수위0,칙득도이계적반현격식.최후적수례험증료이론분석적정학성.저시량조령활、실용적차분격식.
In this paper, two groups partial-node implicit schemes have been designed for solving the initial boundary value problem of the dispersive equation ut=auxxx au They are two level and containing parameters. Their truncation error is O (τ+h2) and absolutely stable. The precision can be improved to O (τ-h^3) with some suitable parameters. Let some coefficients of nodes be 0 , we can deduce two order semi-explicit difference schemes. At the end, the numerical example proves the result of theoretical analysis. The schemes are flexible and especially practicable.