农业工程学报
農業工程學報
농업공정학보
2009年
10期
193-197
,共5页
霍利民%尹金良%樊云飞%谢云芳%范新桥%朱永利
霍利民%尹金良%樊雲飛%謝雲芳%範新橋%硃永利
곽이민%윤금량%번운비%사운방%범신교%주영리
基因表达式%遗传程序%设计%改进基因表达式程序%农村配电网%电力系统%短期负荷预测
基因錶達式%遺傳程序%設計%改進基因錶達式程序%農村配電網%電力繫統%短期負荷預測
기인표체식%유전정서%설계%개진기인표체식정서%농촌배전망%전력계통%단기부하예측
gene expression%genetic programming (GP)%design%improved gene expression programming (IGEP)%countryside distribution network%power system%short-term load forecasting
针对传统基因表达式程序设计(GEP)算法初始种群的产生是随机的,变异率不能在进化的过程中做适应性的调整,对基因的好坏没有标识,在解决相类似的问题时不能利用以往的运行结果的缺点进行了改进,提出了过度繁殖、环境因子选择,自适应变异率,信息素标识基因的好坏,借鉴以往程序运行得到的数学模型的方法,并将改进后的基因表达式程序设计(IGEP)算法应用于农村配电网短期负荷预测中.预测过程是先对负荷样本进行数据预处理,消除伪数据,然后运用改进后的基因表达式程序设计的灵活表达能力,把不同日同一时刻的负荷序列作为样本,分别对平日(周一到周五)和周末的未来时刻的负荷进行分时短期预测.算例表明改进后的基因表达式程序设计算法具有较高的效率,比遗传程序设计(GP)和基因表达式程序设计(GEP)算法具有更好的预测效果.
針對傳統基因錶達式程序設計(GEP)算法初始種群的產生是隨機的,變異率不能在進化的過程中做適應性的調整,對基因的好壞沒有標識,在解決相類似的問題時不能利用以往的運行結果的缺點進行瞭改進,提齣瞭過度繁殖、環境因子選擇,自適應變異率,信息素標識基因的好壞,藉鑒以往程序運行得到的數學模型的方法,併將改進後的基因錶達式程序設計(IGEP)算法應用于農村配電網短期負荷預測中.預測過程是先對負荷樣本進行數據預處理,消除偽數據,然後運用改進後的基因錶達式程序設計的靈活錶達能力,把不同日同一時刻的負荷序列作為樣本,分彆對平日(週一到週五)和週末的未來時刻的負荷進行分時短期預測.算例錶明改進後的基因錶達式程序設計算法具有較高的效率,比遺傳程序設計(GP)和基因錶達式程序設計(GEP)算法具有更好的預測效果.
침대전통기인표체식정서설계(GEP)산법초시충군적산생시수궤적,변이솔불능재진화적과정중주괄응성적조정,대기인적호배몰유표식,재해결상유사적문제시불능이용이왕적운행결과적결점진행료개진,제출료과도번식、배경인자선택,자괄응변이솔,신식소표식기인적호배,차감이왕정서운행득도적수학모형적방법,병장개진후적기인표체식정서설계(IGEP)산법응용우농촌배전망단기부하예측중.예측과정시선대부하양본진행수거예처리,소제위수거,연후운용개진후적기인표체식정서설계적령활표체능력,파불동일동일시각적부하서렬작위양본,분별대평일(주일도주오)화주말적미래시각적부하진행분시단기예측.산례표명개진후적기인표체식정서설계산법구유교고적효솔,비유전정서설계(GP)화기인표체식정서설계(GEP)산법구유경호적예측효과.
Gene expression programming (GEP) was improved to overcome the shortcomings that the initial population was generated randomly. There were no standards to measure the gene, mutation rate could not be adjusted by itself and evolution result got before could not be utilized. The method that excessive multiplication, environmental factor selecting, using pheromones to measure gene, self-adaptive mutation rate and adopting mathematical model got before was proposed. The improved gene expression programming (IGEP) was applied to countryside distribution network short-term load forecasting. Firstly, the load series of the same time but different days were chosen as the training samples. Secondly, the load samples were filtered and processed generally. And finally, the short-term load was forecasted by weekday and weekend after eliminating the pseudo-data. After comparison with the results forecasted by means of genetic programming (GP) and GEP, it proves that the method of IGEP in countryside distribution network short-term load forecasting is better.