高等学校化学学报
高等學校化學學報
고등학교화학학보
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES
2010年
1期
162-166
,共5页
张金娜%赵庆良%尤世界%张国栋
張金娜%趙慶良%尤世界%張國棟
장금나%조경량%우세계%장국동
微生物燃料电池%生物阴极%电极材料%功率密度
微生物燃料電池%生物陰極%電極材料%功率密度
미생물연료전지%생물음겁%전겁재료%공솔밀도
Microbial fuel cell%Bio-cathode%Electrode material%Power density
以葡萄糖(COD初始浓度为2000 mg/L, COD为化学需氧量)为阳极燃料底物, 考察了碳纤维刷和柱状活性碳颗粒作为生物阴极微生物燃料电池(MFC)阴极材料的产电性能. 研究结果表明, 碳纤维刷MFC的启动时间比碳颗粒MFC的长, 达到稳定状态后的恒负载(300 Ω)电压(0.324 V)比碳颗粒阴极MFC的(0.581 V)低. 极化分析结果表明, 碳纤维刷MFC和碳颗粒MFC的最大功率密度分别为24.7 W/m~3(117.2 A/m~3)和50.3 W/m~3(167.2 A/m~3). 电化学交流阻抗谱(EIS)测定结果表明, 由于电极材料对微生物生长和分布状态存在不同的影响, 使得碳纤维刷阴极MFC的极化内阻大于碳颗粒阴极MFC的极化内阻.
以葡萄糖(COD初始濃度為2000 mg/L, COD為化學需氧量)為暘極燃料底物, 攷察瞭碳纖維刷和柱狀活性碳顆粒作為生物陰極微生物燃料電池(MFC)陰極材料的產電性能. 研究結果錶明, 碳纖維刷MFC的啟動時間比碳顆粒MFC的長, 達到穩定狀態後的恆負載(300 Ω)電壓(0.324 V)比碳顆粒陰極MFC的(0.581 V)低. 極化分析結果錶明, 碳纖維刷MFC和碳顆粒MFC的最大功率密度分彆為24.7 W/m~3(117.2 A/m~3)和50.3 W/m~3(167.2 A/m~3). 電化學交流阻抗譜(EIS)測定結果錶明, 由于電極材料對微生物生長和分佈狀態存在不同的影響, 使得碳纖維刷陰極MFC的極化內阻大于碳顆粒陰極MFC的極化內阻.
이포도당(COD초시농도위2000 mg/L, COD위화학수양량)위양겁연료저물, 고찰료탄섬유쇄화주상활성탄과립작위생물음겁미생물연료전지(MFC)음겁재료적산전성능. 연구결과표명, 탄섬유쇄MFC적계동시간비탄과립MFC적장, 체도은정상태후적항부재(300 Ω)전압(0.324 V)비탄과립음겁MFC적(0.581 V)저. 겁화분석결과표명, 탄섬유쇄MFC화탄과립MFC적최대공솔밀도분별위24.7 W/m~3(117.2 A/m~3)화50.3 W/m~3(167.2 A/m~3). 전화학교류조항보(EIS)측정결과표명, 유우전겁재료대미생물생장화분포상태존재불동적영향, 사득탄섬유쇄음겁MFC적겁화내조대우탄과립음겁MFC적겁화내조.
Power generation from bio-cathode microbial fuel cell(MFC) with graphite fiber brush(GFB) and graphite granule(GG) as cathode material was investigated with COD(Chemical Oxygen Demand) of 2000 mg/L glucose as anodic fuel. The results demonstrated that GFB-cathode MFC could be started up after a longer time with lower voltage of 0.324 V than GG-cathode MFC(0.581 V) at constant load of 300 Ω. Polarization analysis showed that the maximum power density of 24.7 W/m~3(117.2 A/m~3) and 50.3 W/m~3(167.2 A/m~3) were reached for GFB-cathode MFC and GG-cathode MFC, respectively. As indicated by electrochemical impedance spectroscopy(EIS) analysis, the difference in power output of two MFCs should result from internal resistance, particularly activation resistance. This is mainly because of the difference in surface feature of two materials for microbial growth and distribution. Organic compounds could be removed in both MFC systems, which accomplished waste water treatment.