机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2010年
3期
65-70
,共6页
特征提取%白噪声统计特性%Hilbert-Huang变换%振动模式
特徵提取%白譟聲統計特性%Hilbert-Huang變換%振動模式
특정제취%백조성통계특성%Hilbert-Huang변환%진동모식
Feature extraction Statistical characteristics of white noise Hilbert-Huang transform Vibration mode
针对机械设备状态监测和故障诊断过程中的特征提取问题,提出一种基于白噪声统计特性来实现机械振动信号振动模式提取的方法.该方法是对经验模式分解算法(Empirical mode decomposition,EMD)的一种发展,应用归一化白噪声在EMD中具有的统计特性,可以自适应地消除机械振动信号经EMD分解产生的高频噪声分量及低频虚假分量,得到反映信号实际物理意义的振动模式分量集.对该振动模式分量集进行Hilbert变换,提取出信号的Hilbert时频特征.整个特征提取过程不需要构造任何参数表达的基函数及相关滤波函数,也无需有关信号的任何先验知识,因而在实际应用中具有更好的适用性.仿真信号和转子试验台试验信号验证该方法的可行性和有效性.
針對機械設備狀態鑑測和故障診斷過程中的特徵提取問題,提齣一種基于白譟聲統計特性來實現機械振動信號振動模式提取的方法.該方法是對經驗模式分解算法(Empirical mode decomposition,EMD)的一種髮展,應用歸一化白譟聲在EMD中具有的統計特性,可以自適應地消除機械振動信號經EMD分解產生的高頻譟聲分量及低頻虛假分量,得到反映信號實際物理意義的振動模式分量集.對該振動模式分量集進行Hilbert變換,提取齣信號的Hilbert時頻特徵.整箇特徵提取過程不需要構造任何參數錶達的基函數及相關濾波函數,也無需有關信號的任何先驗知識,因而在實際應用中具有更好的適用性.倣真信號和轉子試驗檯試驗信號驗證該方法的可行性和有效性.
침대궤계설비상태감측화고장진단과정중적특정제취문제,제출일충기우백조성통계특성래실현궤계진동신호진동모식제취적방법.해방법시대경험모식분해산법(Empirical mode decomposition,EMD)적일충발전,응용귀일화백조성재EMD중구유적통계특성,가이자괄응지소제궤계진동신호경EMD분해산생적고빈조성분량급저빈허가분량,득도반영신호실제물리의의적진동모식분량집.대해진동모식분량집진행Hilbert변환,제취출신호적Hilbert시빈특정.정개특정제취과정불수요구조임하삼수표체적기함수급상관려파함수,야무수유관신호적임하선험지식,인이재실제응용중구유경호적괄용성.방진신호화전자시험태시험신호험증해방법적가행성화유효성.
Focusing on feature extraction in condition monitoring and fault diagnosis of mechanical equipment, a method based on the characteristics of white noise is presented to extract vibration mode from mechanical vibration signal. This method is a developed algorithm of empirical mode decomposition (EMD), which adaptively eliminates high frequency noise components and low frequency false components by applying the characteristics of normalized white noise under EMD, so the intrinsic mode set reflecting actual physical meaning of vibration signal is obtained. Hilbert transform is performed to the extracted intrinsic mode set, and the Hilbert time-frequency feature of observed signals are extracted. In the whole feature extracting process, the construction of general basis function described by some parameters and related filter function is unnecessary, and any prior information about the observed signal is no more required, so the method has a better applicability in actual applications. Both computer simulation and rotor set experimental results verify this approach is feasible and effective.