集美大学学报:自然科学版
集美大學學報:自然科學版
집미대학학보:자연과학판
Journal of Jimei University(Natural Science)
2011年
5期
389-391
,共3页
边界退化%扩散方程%唯一性%正则性
邊界退化%擴散方程%唯一性%正則性
변계퇴화%확산방정%유일성%정칙성
boundary degeneracy%diffusion equation%uniqueness%regular property
研究在边界退化的奇异扩散方程u/t=div(dα︱▽u︱p-2▽u),(x,t)∈QT=Ω×(0,T),其中ΩRN是一个边界适当光滑的有界区域,p〉1,α〉0,d(x)=dist(x,Ω).在假设解的唯一性成立的前提下,证明了这种热传导问题的弱解具有与一般热传导问题的弱解相似的正则性.
研究在邊界退化的奇異擴散方程u/t=div(dα︱▽u︱p-2▽u),(x,t)∈QT=Ω×(0,T),其中ΩRN是一箇邊界適噹光滑的有界區域,p〉1,α〉0,d(x)=dist(x,Ω).在假設解的唯一性成立的前提下,證明瞭這種熱傳導問題的弱解具有與一般熱傳導問題的弱解相似的正則性.
연구재변계퇴화적기이확산방정u/t=div(dα︱▽u︱p-2▽u),(x,t)∈QT=Ω×(0,T),기중ΩRN시일개변계괄당광활적유계구역,p〉1,α〉0,d(x)=dist(x,Ω).재가설해적유일성성립적전제하,증명료저충열전도문제적약해구유여일반열전도문제적약해상사적정칙성.
The singular diffusion equation with boundary degeneracy u/t=div(dα︱▽u︱p-2▽u),(x,t)∈QT=Ω×(0,T) was studied,where ΩRN was bounded domain with appropriately smooth boundary,p1,α0,α≠1,and d(x)=dist(x,Ω).Under the assumption on the uniqueness of the weak solution,the regular properties of the weak solution similar to those of the weak solution for a general heat conduction without degeneracy on the boundary were obtained.