控制理论与应用
控製理論與應用
공제이론여응용
CONTROL THEORY & APPLICATIONS
2009年
10期
1162-1166
,共5页
图像矩%神经网络%机器人%视觉伺服
圖像矩%神經網絡%機器人%視覺伺服
도상구%신경망락%궤기인%시각사복
image moments%neural network%robot%visual servoing
针对传统的视觉伺服方法中图像几何特征的标记、提取与匹配过程复杂且通用性差等问题,本文提出了一种基于图像矩的机器人四自由度(4DOF)视觉伺服方法.首先建立了眼在手系统中图像矩与机器人位姿之间的非线性增量变换关系,为利用图像矩进行机器人视觉伺服控制提供了理论基础,然后在未对摄像机与手眼关系进行标定的情况下,利用反向传播(BP)神经网络的非线性映射特性设计了基于图像矩的机器人视觉伺服控制方案,最后用训练好的神经网络进行了视觉伺服跟踪控制.实验结果表明基于本文算法可实现0.5 mm的位置与0.5°的姿态跟踪精度,验证了算法的的有效性与较好的伺服性能.
針對傳統的視覺伺服方法中圖像幾何特徵的標記、提取與匹配過程複雜且通用性差等問題,本文提齣瞭一種基于圖像矩的機器人四自由度(4DOF)視覺伺服方法.首先建立瞭眼在手繫統中圖像矩與機器人位姿之間的非線性增量變換關繫,為利用圖像矩進行機器人視覺伺服控製提供瞭理論基礎,然後在未對攝像機與手眼關繫進行標定的情況下,利用反嚮傳播(BP)神經網絡的非線性映射特性設計瞭基于圖像矩的機器人視覺伺服控製方案,最後用訓練好的神經網絡進行瞭視覺伺服跟蹤控製.實驗結果錶明基于本文算法可實現0.5 mm的位置與0.5°的姿態跟蹤精度,驗證瞭算法的的有效性與較好的伺服性能.
침대전통적시각사복방법중도상궤하특정적표기、제취여필배과정복잡차통용성차등문제,본문제출료일충기우도상구적궤기인사자유도(4DOF)시각사복방법.수선건립료안재수계통중도상구여궤기인위자지간적비선성증량변환관계,위이용도상구진행궤기인시각사복공제제공료이론기출,연후재미대섭상궤여수안관계진행표정적정황하,이용반향전파(BP)신경망락적비선성영사특성설계료기우도상구적궤기인시각사복공제방안,최후용훈련호적신경망락진행료시각사복근종공제.실험결과표명기우본문산법가실현0.5 mm적위치여0.5°적자태근종정도,험증료산법적적유효성여교호적사복성능.
To avoid the complicated marking, extracting and matching of image features in the traditional visual servoing systems and to improve the universality of the algorithm, a novel visual servoing of 4-degrees of freedom(4DOF) is proposed for an eye-in-hand robot based on image moments and neural network. First, the nonlinear transform relationship between image moments and the robot pose is developed, which provides the theoretical basis for the visual servoing using image moments. Then, a back propagation(BP) neural network is designed to map the transformation from image moments variation to the robot pose displacement with 4DOF without the external and internal parameters calibration for the camera. After this, the proposed control scheme can be applied to the robotic visual servoing. The experiment results show that the tracking error is less than 0.5 mm and 0.5° respectively in position and in orientation. This confirms the validity and satisfactory servoing performance of the proposed method.