广西大学学报(自然科学版)
廣西大學學報(自然科學版)
엄서대학학보(자연과학판)
JOURNAL OF GUANGXI UNIVERSITY (NATURAL SCIENCE EDITION)
2009年
6期
845-848
,共4页
幂零群%极大子群%p-群
冪零群%極大子群%p-群
멱령군%겁대자군%p-군
nilpotent groups%maximal subgroups%p-groups
设G是有限群,用δ(G)表示G的非循环子群共轭类的个数.δ(G)对G的结构有比较强的影响.例如,δ(G)=0当且仅当G循环.δ(G)=1当且仅当G非循环而G的所有真子群循环,即G内循环群.2007年,李世荣,赵旭波给出了有限δ-群(即每个可解子群日满足δ(H)≤2的有限群)的完全分类.作为以上问题的继续,使用群论的初等方法,给出δ(G)=4的幂零群的完全分类.
設G是有限群,用δ(G)錶示G的非循環子群共軛類的箇數.δ(G)對G的結構有比較彊的影響.例如,δ(G)=0噹且僅噹G循環.δ(G)=1噹且僅噹G非循環而G的所有真子群循環,即G內循環群.2007年,李世榮,趙旭波給齣瞭有限δ-群(即每箇可解子群日滿足δ(H)≤2的有限群)的完全分類.作為以上問題的繼續,使用群論的初等方法,給齣δ(G)=4的冪零群的完全分類.
설G시유한군,용δ(G)표시G적비순배자군공액류적개수.δ(G)대G적결구유비교강적영향.례여,δ(G)=0당차부당G순배.δ(G)=1당차부당G비순배이G적소유진자군순배,즉G내순배군.2007년,리세영,조욱파급출료유한δ-군(즉매개가해자군일만족δ(H)≤2적유한군)적완전분류.작위이상문제적계속,사용군론적초등방법,급출δ(G)=4적멱령군적완전분류.
Let G be a finite group, the number of conjugate classes of the non-cyclic subgroups of G is denoted by δ(G). It is quite clear that δ(G) give a lot of information about the structure of G. For instance, δ(G) =0 if and only of G is cyclic. Δ(G) = 1 if and only if G is non-cyclic but every proper subgroup of G is cyclic. In 2007, LI and ZHAO investigated the finitegroups (I. E. A finite group in which every soluble subgroup H satisfies δ(H) ≤ 2). In this paper, the finite nilpotent groups with δ(G) =4 are classifed.