大连民族学院学报
大連民族學院學報
대련민족학원학보
JOURNAL OF DALIAN UNIVERSITY FOR NATIONAL MINORITIES
2012年
1期
37-42
,共6页
Hausdorff维数%分形维数%记忆项%整体吸引子
Hausdorff維數%分形維數%記憶項%整體吸引子
Hausdorff유수%분형유수%기억항%정체흡인자
hausdorff dimension%fractal dimension%memory term%global attractor
考虑了在无界区域上如下具有线性记忆项的半线性耗散波动方程的整体吸引子的维数估计{uu+δut-k(0)φ(x)△u-∫∞0k'(s)φ(x)△u(t-s)ds+f(u)=h(x),(x,t)∈RN×R+u(x,t)=u0(x,t),t≤0;ut(x,0)=tu0(x,0),x∈RN,其中,N≥3,δ〉0,并φ(x)-1=:g(x)∈LN/2(RN)∩L∞(RN)。为了克服在无界区域中与微分算子(x)△的非紧性有关的困难,引入了能量空间X0=D1,2(RN)×L2g(RN)×L2μ(R+,D1,2(RN))。Hausdorff维数和分形维数的估计是根据特征方程-φ(x)△u=au,x∈RN的特征值a的分布的渐近估计得出的。
攷慮瞭在無界區域上如下具有線性記憶項的半線性耗散波動方程的整體吸引子的維數估計{uu+δut-k(0)φ(x)△u-∫∞0k'(s)φ(x)△u(t-s)ds+f(u)=h(x),(x,t)∈RN×R+u(x,t)=u0(x,t),t≤0;ut(x,0)=tu0(x,0),x∈RN,其中,N≥3,δ〉0,併φ(x)-1=:g(x)∈LN/2(RN)∩L∞(RN)。為瞭剋服在無界區域中與微分算子(x)△的非緊性有關的睏難,引入瞭能量空間X0=D1,2(RN)×L2g(RN)×L2μ(R+,D1,2(RN))。Hausdorff維數和分形維數的估計是根據特徵方程-φ(x)△u=au,x∈RN的特徵值a的分佈的漸近估計得齣的。
고필료재무계구역상여하구유선성기억항적반선성모산파동방정적정체흡인자적유수고계{uu+δut-k(0)φ(x)△u-∫∞0k'(s)φ(x)△u(t-s)ds+f(u)=h(x),(x,t)∈RN×R+u(x,t)=u0(x,t),t≤0;ut(x,0)=tu0(x,0),x∈RN,기중,N≥3,δ〉0,병φ(x)-1=:g(x)∈LN/2(RN)∩L∞(RN)。위료극복재무계구역중여미분산자(x)△적비긴성유관적곤난,인입료능량공간X0=D1,2(RN)×L2g(RN)×L2μ(R+,D1,2(RN))。Hausdorff유수화분형유수적고계시근거특정방정-φ(x)△u=au,x∈RN적특정치a적분포적점근고계득출적。
We consider the following semilinear dissipative wave equations with linear memory on the unbounded domain RN {uu+δut-k(0)φ(x)△u-∫∞0k'(s)φ(x)△u(t-s)ds+f(u)=h(x),(x,t)∈RN×R+u(x,t)=u0(x,t),t≤0;ut(x,0)=tu0(x,0),x∈RN,WhereN≥3,δ〉0,φ(x)-1=:g(x)∈LN/2(RN)∩L∞(RN).The energy space X0=D1,2(RN)×L2g(RN)×L2μ(R+,D1,2(RN)) is introduced to overcome the difficulties associated with the non - compactness of operators, which arise in unbounded domains. The es- timates on the Hausdorff and fractal dimension are achieved according to an asymptotic estimate of the distribution of the eigenvalue of the characteristic equation - ~b (x)/X u = au, x E RN.