高等数学研究
高等數學研究
고등수학연구
STUDIES IN COLLEGE MATHEMATICS
2011年
5期
33-35
,共3页
中值定理%化归%类比%辅助函数
中值定理%化歸%類比%輔助函數
중치정리%화귀%류비%보조함수
mean Value theorem%reduction%analogy%auxiliary function
通过对中值定理教学思路的设计,给出探究性教学方法的一个实例,即通过导数概念的物理意义导出Lagrange中值定理,经特殊化后推出Rolle定理,再经化归思想给出Lagrange定理的证明,最后推广得到Cauchy中值定理,并借助类比或化归思想分别给出Cauchy定理的证明.
通過對中值定理教學思路的設計,給齣探究性教學方法的一箇實例,即通過導數概唸的物理意義導齣Lagrange中值定理,經特殊化後推齣Rolle定理,再經化歸思想給齣Lagrange定理的證明,最後推廣得到Cauchy中值定理,併藉助類比或化歸思想分彆給齣Cauchy定理的證明.
통과대중치정리교학사로적설계,급출탐구성교학방법적일개실례,즉통과도수개념적물리의의도출Lagrange중치정리,경특수화후추출Rolle정리,재경화귀사상급출Lagrange정리적증명,최후추엄득도Cauchy중치정리,병차조류비혹화귀사상분별급출Cauchy정리적증명.
A case of inquiry teaching is designed for the mean value theorem with the following steps. The Lagrange mean value theorem is first introduced by the interpretation of the concept of derivative, and then Rollers theorem which can be view as a special case of the Lagrange mean value theorem. The proof of the Lagrange mean value theorem is given by the reduction method. The Cauchy mean value theorem is introduced by generalizing the Lagrange mean value theorem, which is then proved by the analogy method or the reduction method.