电子质量
電子質量
전자질량
ELECTRONICS QUALITY
2011年
8期
14-16,19
,共4页
组合导航%RBF神经网络%滚动预测%软件可靠性
組閤導航%RBF神經網絡%滾動預測%軟件可靠性
조합도항%RBF신경망락%곤동예측%연건가고성
integrated navigation system%RBF neural network%rolling prediction%software reliability
针对组合导航系统软件可靠性的预测问题,研究了系统累积故障数与系统运行时间的关系,提出一种基于RBF神经网络的软件可靠性预测模型,取得了理想的短期预测效果。为了获得较好的长期预测效果,采取滚动式训练、在线调整网络结构的方法对之加以改进。仿真结果表明,该模型拟合精度优于J-M模型、与G-O模型相当,预测精度高;该模型不需假设条件,泛化能力强、稳定性好,可用于实践中指导软件测试。
針對組閤導航繫統軟件可靠性的預測問題,研究瞭繫統纍積故障數與繫統運行時間的關繫,提齣一種基于RBF神經網絡的軟件可靠性預測模型,取得瞭理想的短期預測效果。為瞭穫得較好的長期預測效果,採取滾動式訓練、在線調整網絡結構的方法對之加以改進。倣真結果錶明,該模型擬閤精度優于J-M模型、與G-O模型相噹,預測精度高;該模型不需假設條件,汎化能力彊、穩定性好,可用于實踐中指導軟件測試。
침대조합도항계통연건가고성적예측문제,연구료계통루적고장수여계통운행시간적관계,제출일충기우RBF신경망락적연건가고성예측모형,취득료이상적단기예측효과。위료획득교호적장기예측효과,채취곤동식훈련、재선조정망락결구적방법대지가이개진。방진결과표명,해모형의합정도우우J-M모형、여G-O모형상당,예측정도고;해모형불수가설조건,범화능력강、은정성호,가용우실천중지도연건측시。
In order to meet the needs of accurately predicting the number of faults in program modules in integrated navigation system,the relation of the faults number and the running time was study,and a software reliability prediction mode based on RBF neural network was proposed,a predictive accuracy short dated was meet.For the sake of a predictive accuracy long ranged the neural network was improved by rolling training.The simulation results indicate that the RBF model established and the G-O model have the better quality of fit than J-M model;the RBF model shows a higher predictive accuracy than the J-M model and the G-O model;the model needs no assumption and can be used in deference applications.The model can find a better use in guiding the practical of the software test.