大学数学
大學數學
대학수학
COLLEGE MATHEMATICS
2011年
6期
140-142
,共3页
付必胜%杨益民%沙峰
付必勝%楊益民%沙峰
부필성%양익민%사봉
可求长曲线%弧长%有限维赋范线性空间%内积空间%绝对连续函数%奇异函数
可求長麯線%弧長%有限維賦範線性空間%內積空間%絕對連續函數%奇異函數
가구장곡선%호장%유한유부범선성공간%내적공간%절대련속함수%기이함수
rectifiable curve%arc length%finite dimensional linear normed space%inner product space%absolutely continuous function%singular function
文献[1]指出光滑性不是建立弧长计算公式的必要条件,并在导数x’(t),y’(t)可积的条件下建立了弧长计算公式.本文对可求长曲线弧长的计算问题进一步探讨,在黎曼(Riemann)可积条件下,给出有限维赋范线性空间上的曲线弧长计算公式.
文獻[1]指齣光滑性不是建立弧長計算公式的必要條件,併在導數x’(t),y’(t)可積的條件下建立瞭弧長計算公式.本文對可求長麯線弧長的計算問題進一步探討,在黎曼(Riemann)可積條件下,給齣有限維賦範線性空間上的麯線弧長計算公式.
문헌[1]지출광활성불시건립호장계산공식적필요조건,병재도수x’(t),y’(t)가적적조건하건립료호장계산공식.본문대가구장곡선호장적계산문제진일보탐토,재려만(Riemann)가적조건하,급출유한유부범선성공간상적곡선호장계산공식.
The paper [1] points out that smooth property is not the necessary condition of the calculation formula of arc length,and gives a calculation formula of arc length under the condition that derivativesx'(t),y'(t) are integrable. This paper further studies the calculating problem of arc length, and gives a calculation formula of arc length in the finite dimensional linear normed space under the condition that the curve is Riemann integrable.