纯粹数学与应用数学
純粹數學與應用數學
순수수학여응용수학
PURE AND APPLIED MATHEMATICS
2011年
5期
662-671
,共10页
超空间%hit—or—miss拓扑%紧型度量%完备映射%拓扑熵
超空間%hit—or—miss拓撲%緊型度量%完備映射%拓撲熵
초공간%hit—or—miss탁복%긴형도량%완비영사%탁복적
hyperspace dynamical system%hit-or-miss topology%compact-type metric%perfect mapping%topological entropy
设(X,d,f)为拓扑动力系统,其中X为局部紧第二可数Hausdorff空间,d为紧型度量,f为完备映射,用2^x和f分别表示由X的所有非空闭子集和所有闭子集构成的集族,(2^x,ρ,2^f)和(f,ρ,2^f)为由(X,d,f)诱导的赋予hit—or—miss拓扑的超空间动力系统.本文研究了h(X,d,f)和h(2^x,ρ,2^f)及^(f,ρ,2^f)(在其存在的情况下)之间的关系,并给出h(2^x,ρ,2^f)及h(f,ρ,2^f)(在其存在的情况下)为无穷大的一个充分条件.这些结论丰富了赋予hit—or—miss拓扑的超空间动力系统的内容.
設(X,d,f)為拓撲動力繫統,其中X為跼部緊第二可數Hausdorff空間,d為緊型度量,f為完備映射,用2^x和f分彆錶示由X的所有非空閉子集和所有閉子集構成的集族,(2^x,ρ,2^f)和(f,ρ,2^f)為由(X,d,f)誘導的賦予hit—or—miss拓撲的超空間動力繫統.本文研究瞭h(X,d,f)和h(2^x,ρ,2^f)及^(f,ρ,2^f)(在其存在的情況下)之間的關繫,併給齣h(2^x,ρ,2^f)及h(f,ρ,2^f)(在其存在的情況下)為無窮大的一箇充分條件.這些結論豐富瞭賦予hit—or—miss拓撲的超空間動力繫統的內容.
설(X,d,f)위탁복동력계통,기중X위국부긴제이가수Hausdorff공간,d위긴형도량,f위완비영사,용2^x화f분별표시유X적소유비공폐자집화소유폐자집구성적집족,(2^x,ρ,2^f)화(f,ρ,2^f)위유(X,d,f)유도적부여hit—or—miss탁복적초공간동력계통.본문연구료h(X,d,f)화h(2^x,ρ,2^f)급^(f,ρ,2^f)(재기존재적정황하)지간적관계,병급출h(2^x,ρ,2^f)급h(f,ρ,2^f)(재기존재적정황하)위무궁대적일개충분조건.저사결론봉부료부여hit—or—miss탁복적초공간동력계통적내용.
Let (X, d, f) be a topological dynamical system, where X is a Hausdorff locally compact second countable space, d is a compact-type metric and f is a perfect mapping. Let F (resp., 2x) be the space of all closed subsets (resp., all non-empty closed subsets) of X equipped with the hit-or-miss topology. Let (F, ρ, 2f) and (2x, ρ, 2f) denote the hyperspace dynamical systems induced by (X, d, f). In this papper, the authors studied the relationship between h(X, d, f) and h(2X, p, 2f) (resp., h(F, ρ, 2f), whenever (F, ρ, 2f) exists). In addition, a sufficient condition was provided to demonstrate that h(2x, ρ, 2f) (resp., h(F, p, 2f), whenever (F, ρ, 2f) exists) is infinity. These conclusions enriched the contents of induced hyperspace dyrnamical systems equipped with the hit-or-miss topology.