北华大学学报:自然科学版
北華大學學報:自然科學版
북화대학학보:자연과학판
Journal of Beihua University(Natural Science)
2011年
5期
523-529
,共7页
多点边值问题%叠合度%共振
多點邊值問題%疊閤度%共振
다점변치문제%첩합도%공진
multi-points boundary value problem%coincidence degree%resonance
利用叠合度理论,研究了n阶非线性常微分方程x^(n)(t)=f(t,x(t),x'(t),…,x^(n-1)(t))+e(t),a.e.t∈(0,1)满足m点边界条件x^(i)(0)=0,i=1,2,…,n-1,x(1)=∑i=1^m-2 αix(ξi)的高阶多点边值问题在共振条件下的非平凡解的存在性,这里f:[0,1]×R^n→R是L^1-Carathéodory函数,e(t)∈L^1[0,1],αi∈R(i=1,2,…,m-2)以及0〈ξ1〈ξ2〈…〈ξm-2〈1.
利用疊閤度理論,研究瞭n階非線性常微分方程x^(n)(t)=f(t,x(t),x'(t),…,x^(n-1)(t))+e(t),a.e.t∈(0,1)滿足m點邊界條件x^(i)(0)=0,i=1,2,…,n-1,x(1)=∑i=1^m-2 αix(ξi)的高階多點邊值問題在共振條件下的非平凡解的存在性,這裏f:[0,1]×R^n→R是L^1-Carathéodory函數,e(t)∈L^1[0,1],αi∈R(i=1,2,…,m-2)以及0〈ξ1〈ξ2〈…〈ξm-2〈1.
이용첩합도이론,연구료n계비선성상미분방정x^(n)(t)=f(t,x(t),x'(t),…,x^(n-1)(t))+e(t),a.e.t∈(0,1)만족m점변계조건x^(i)(0)=0,i=1,2,…,n-1,x(1)=∑i=1^m-2 αix(ξi)적고계다점변치문제재공진조건하적비평범해적존재성,저리f:[0,1]×R^n→R시L^1-Carathéodory함수,e(t)∈L^1[0,1],αi∈R(i=1,2,…,m-2)이급0〈ξ1〈ξ2〈…〈ξm-2〈1.
By using the theory of coincidence degree,the existence of nontrivial solutions for nonlinear nth-order differential equation is discussed x^(n)(t) = f(t,x(t),x'(t),…,x^(n-1)(t)) + e(t),a.e.t∈(0,1) with m-point boundary value conditions x^(i)(0)=0,i=1,2,…,n-1,x(1)=∑i=1^m-2 αix(ξi) where f: [0,1]× R^ n→R is L^1-Carathéodory function,e(t) ∈L^1[0,1],αi∈R(i = 1,2,…,m-2) and 0 〈ξ1〈 ξ2 〈… 〈ξm-2 〈1.