热喷涂技术
熱噴塗技術
열분도기술
THERMAL SPRAY TECHNOLOGY
2011年
3期
15-19
,共5页
非晶合金%颗粒强化%显微硬度%弹性模量%APS
非晶閤金%顆粒彊化%顯微硬度%彈性模量%APS
비정합금%과립강화%현미경도%탄성모량%APS
Amorphous alloy%Ceramic particle%Microhardness%Modulus of elasticity%APS
通过大气等离子喷涂技术(APS)在Q235基体上制备了一种Al2O3-13%TiO2颗粒增强的Fe基非晶态合金涂层。利用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度计(MHT)和纳米压痕仪对该涂层的显微组织结构、相组成以及弹性模量等进行了研究。结果表明:采用APS喷涂技术制备的该涂层由白色和灰黑色物质组成,白色区域以Fe基非晶合金为主,灰黑色区域则是非晶合金与Al2O3-13%TiO2的混合结构。该涂层孔隙率为1.8%;非晶区域的显微硬度平均为780HV0.1,涂层的平均显微硬度达952HV0.1,由于陶瓷相的加入使得涂层显微硬度提升22%。纳米压痕仪的研究结果表明陶瓷颗粒强化区域杨氏弹性模量均值达232GPa,比未强化的Fe基非晶态区域高出37%。
通過大氣等離子噴塗技術(APS)在Q235基體上製備瞭一種Al2O3-13%TiO2顆粒增彊的Fe基非晶態閤金塗層。利用光學顯微鏡(OM)、X射線衍射儀(XRD)、掃描電子顯微鏡(SEM)、顯微硬度計(MHT)和納米壓痕儀對該塗層的顯微組織結構、相組成以及彈性模量等進行瞭研究。結果錶明:採用APS噴塗技術製備的該塗層由白色和灰黑色物質組成,白色區域以Fe基非晶閤金為主,灰黑色區域則是非晶閤金與Al2O3-13%TiO2的混閤結構。該塗層孔隙率為1.8%;非晶區域的顯微硬度平均為780HV0.1,塗層的平均顯微硬度達952HV0.1,由于陶瓷相的加入使得塗層顯微硬度提升22%。納米壓痕儀的研究結果錶明陶瓷顆粒彊化區域楊氏彈性模量均值達232GPa,比未彊化的Fe基非晶態區域高齣37%。
통과대기등리자분도기술(APS)재Q235기체상제비료일충Al2O3-13%TiO2과립증강적Fe기비정태합금도층。이용광학현미경(OM)、X사선연사의(XRD)、소묘전자현미경(SEM)、현미경도계(MHT)화납미압흔의대해도층적현미조직결구、상조성이급탄성모량등진행료연구。결과표명:채용APS분도기술제비적해도층유백색화회흑색물질조성,백색구역이Fe기비정합금위주,회흑색구역칙시비정합금여Al2O3-13%TiO2적혼합결구。해도층공극솔위1.8%;비정구역적현미경도평균위780HV0.1,도층적평균현미경도체952HV0.1,유우도자상적가입사득도층현미경도제승22%。납미압흔의적연구결과표명도자과립강화구역양씨탄성모량균치체232GPa,비미강화적Fe기비정태구역고출37%。
Al2O3-13%TiO2 particles strengthened Fe-based amorphous alloy composite coating was deposited onto Q235 substrate through air plasma spray technique (APS). Optical Microscope (OM), X-ray Diffractometer (XRD), Microhardness Tester (MHT) and Nano Indenter were used to analyze the micro-structure, phase compositions, microhardness and Young's modulus of elasticity respectively. Results show that there are white and ash black areas in the coating, the white area mainly consisted of Fe-based amorphous alloy which was the primary phase of the coating, and the black area was mechanical mixed structure of the amorphous and ceramic phases. The porosity of the coating was 1.8%. The average microhardness of amorphous area was 780 HV0.1, and the average microhardness of the coating reached 952 HV0.1 which was promoted by 22% since the addition of ceramic particles. According to the test result by nano indenter, the Young's modulus of elasticity of the ceramic area was as high as 232GPa, which was 37% higher than that of the amorphous area.