河北农业科学
河北農業科學
하북농업과학
JOURNAL OF HEBEI AGRICULTURAL SCIENCES
2011年
4期
96-98,108
,共4页
柴春岭%苏艳超%刘玉春%杨路华
柴春嶺%囌豔超%劉玉春%楊路華
시춘령%소염초%류옥춘%양로화
模糊优选神经网络模型%作物-水盐响应关系%棉花%微咸水灌溉%籽棉产量%灌溉水量%灌溉水矿化度
模糊優選神經網絡模型%作物-水鹽響應關繫%棉花%微鹹水灌溉%籽棉產量%灌溉水量%灌溉水礦化度
모호우선신경망락모형%작물-수염향응관계%면화%미함수관개%자면산량%관개수량%관개수광화도
Fuzzy optimization neural network model%Crop and water-salt response relationship%Cotton%Saline water irrigation%Seed cotton yield%Irrigation water%Irrigation salinity
棉花在诸多影响因素下,生长过程表现为复杂的非线性,使其水-盐的响应关系难以用传统的数学模型进行精确描述。本研究基于大田棉花膜下咸淡水滴灌试验成果,采用模糊优选BP神经网络模型,对籽棉产量与灌溉水量和灌溉水矿化度的响应关系进行了模拟。结果表明:该模型的模拟结果精度良好。模拟得到的连接权重矩阵可良好地表达籽棉产量与各生长阶段微咸水处理水平之间的响应关系,在微咸水灌溉技术中具有一定的指导意义。
棉花在諸多影響因素下,生長過程錶現為複雜的非線性,使其水-鹽的響應關繫難以用傳統的數學模型進行精確描述。本研究基于大田棉花膜下鹹淡水滴灌試驗成果,採用模糊優選BP神經網絡模型,對籽棉產量與灌溉水量和灌溉水礦化度的響應關繫進行瞭模擬。結果錶明:該模型的模擬結果精度良好。模擬得到的連接權重矩陣可良好地錶達籽棉產量與各生長階段微鹹水處理水平之間的響應關繫,在微鹹水灌溉技術中具有一定的指導意義。
면화재제다영향인소하,생장과정표현위복잡적비선성,사기수-염적향응관계난이용전통적수학모형진행정학묘술。본연구기우대전면화막하함담수적관시험성과,채용모호우선BP신경망락모형,대자면산량여관개수량화관개수광화도적향응관계진행료모의。결과표명:해모형적모의결과정도량호。모의득도적련접권중구진가량호지표체자면산량여각생장계단미함수처리수평지간적향응관계,재미함수관개기술중구유일정적지도의의。
The growth process of cotton expressed a complex non-linear characteristic influence by many factors,which made the water-salt response relationship be difficult to be accurately described with the traditional mathematical models.Based on the test results of drip irrigation with salt-fresh water under film of cotton,the relationships between seed cotton yield and irrigation water and salinity were simulated by fuzzy optimization BP neural network model.The result showed that the fuzzy optimization neural network model got higher simulation precision than Jensen model,and the weight matrix expressed the relationship between seed cotton yield and the saline water treatment levels in each growth stage well.It was of some guiding significance in saline water irrigation.