应用数学和力学
應用數學和力學
응용수학화역학
APPLIED MATHEMATICS AND MECHANICS
2001年
2期
167-181
,共15页
电流变液%内变量理论%本构关系
電流變液%內變量理論%本構關繫
전류변액%내변량이론%본구관계
研究了电流变液的微结构本构关系,其理论框架是基于内变量理论和机理的分析,电流变液是由高介电常数的颗粒悬浮在某种液体中组成的,在电场作用下,极化的颗粒将沿着电场方向聚集在一起形成链状结构,颗粒聚集体的大小和方向将随外加电场和应变率的变化进行调整,因而可以通过建立起能量守恒方程和力平衡方程来确定颗粒聚集体的大小和方向的变化,那么,一个三维的、清晰的本构关系可以由相互作用能和系统的耗散能导出,具体考虑和讨论了在简单剪切载荷作用下的系统响应,发现电流变液的切变剪薄粘滞系数同系统Mason数之间近似于幂指数∝(Mn)-0.82的关系,
研究瞭電流變液的微結構本構關繫,其理論框架是基于內變量理論和機理的分析,電流變液是由高介電常數的顆粒懸浮在某種液體中組成的,在電場作用下,極化的顆粒將沿著電場方嚮聚集在一起形成鏈狀結構,顆粒聚集體的大小和方嚮將隨外加電場和應變率的變化進行調整,因而可以通過建立起能量守恆方程和力平衡方程來確定顆粒聚集體的大小和方嚮的變化,那麽,一箇三維的、清晰的本構關繫可以由相互作用能和繫統的耗散能導齣,具體攷慮和討論瞭在簡單剪切載荷作用下的繫統響應,髮現電流變液的切變剪薄粘滯繫數同繫統Mason數之間近似于冪指數∝(Mn)-0.82的關繫,
연구료전류변액적미결구본구관계,기이론광가시기우내변량이론화궤리적분석,전류변액시유고개전상수적과립현부재모충액체중조성적,재전장작용하,겁화적과립장연착전장방향취집재일기형성련상결구,과립취집체적대소화방향장수외가전장화응변솔적변화진행조정,인이가이통과건립기능량수항방정화력평형방정래학정과립취집체적대소화방향적변화,나요,일개삼유적、청석적본구관계가이유상호작용능화계통적모산능도출,구체고필화토론료재간단전절재하작용하적계통향응,발현전류변액적절변전박점체계수동계통Mason수지간근사우멱지수∝(Mn)-0.82적관계,
A microstructural constitutive theory of ER suspensions was formulated in this investigation. The framework was based on the internal variable theory and the mechanism analysis. The ER suspension consists of fine particles with high dielectric constant and the supporting fluid. Under the action of the electric field, the polarized particles will aggregate together to form the chain_like structures along the direction of the electric field. As the size and orientation of the particle aggregates are volatile, and they adjust according to the applied electric field and strain rate, the energy conservation equation and the force equilibrium equation were thus established to determine the orientation and size of the aggregates. Following that, a three_dimensional, explicit form of the constitutive equation was derived based on the interaction energy and the dissipation function of the system. The response of the system under the action of a simple shearing load was considered and discussed in detail. It is found that the shear_thinning viscosity of an ER suspension is well approximated by the power_law ∝(Mn)-0.82.