稀有金属材料与工程
稀有金屬材料與工程
희유금속재료여공정
RARE METAL MATERIALS AND ENGINEERNG
2002年
1期
22-25
,共4页
硬化指数%硬化率%亚稳态材料
硬化指數%硬化率%亞穩態材料
경화지수%경화솔%아은태재료
hardening rate%hardening exponent%metastable materials
由于变形过程中产生应变诱发马氏体相变, 亚稳奥氏体不锈钢低温下硬化曲线呈S形. 在每隔1.5%的工程应变小区间利用Hollomon公式求得硬化指数n, 发现n值不是常数. 而且n值和硬化率随应变的增加呈抛物线形变化, n值随着应变率的增高相应的减小.
由于變形過程中產生應變誘髮馬氏體相變, 亞穩奧氏體不鏽鋼低溫下硬化麯線呈S形. 在每隔1.5%的工程應變小區間利用Hollomon公式求得硬化指數n, 髮現n值不是常數. 而且n值和硬化率隨應變的增加呈拋物線形變化, n值隨著應變率的增高相應的減小.
유우변형과정중산생응변유발마씨체상변, 아은오씨체불수강저온하경화곡선정S형. 재매격1.5%적공정응변소구간이용Hollomon공식구득경화지수n, 발현n치불시상수. 이차n치화경화솔수응변적증가정포물선형변화, n치수착응변솔적증고상응적감소.
The hardening curve exhibits sigmoid shape in metastable
austenite stainless steel at low temperature due to strain induced
martensite transformation during deformation. The hardening exponent
n values derived from Hollomon equation in each 1.5% of nominal
strain are found not to be constant. Furthermore, both the n values
and the hardening rate present parabola with increase of strain,
while n values decrease correspondingly with increase of strain
rate.