数据采集与处理
數據採集與處理
수거채집여처리
JOURNAL OF DATA ACQUISITION & PROCESSING
2010年
1期
33-38
,共6页
牛奕龙%陈志菲%孙进才%王毅%陶林伟
牛奕龍%陳誌菲%孫進纔%王毅%陶林偉
우혁룡%진지비%손진재%왕의%도림위
方位估计%频率估计%信号相位匹配原理%参数联合估计%免疫量子克隆算法
方位估計%頻率估計%信號相位匹配原理%參數聯閤估計%免疫量子剋隆算法
방위고계%빈솔고계%신호상위필배원리%삼수연합고계%면역양자극륭산법
DOA estimation%frequency estimation%SPM principle%joint parameter estimation%IQCA
信号相位匹配(SPM)原理同时估计信号方位和频率两参数时,因计算量大,需设置固定的搜索步长和频带范围.针对该问题,提出了一种利用免疫量子克隆算法(IQCA)对声源波达方向和频率二维参数进行快速联合估计的高分辨方法.将SPM原理的奇异值分解(SVDSPM)判别准则作为具有双自变量(方位和频率)的适应度函数,并通过IQCA对该适应度函数进行非线性全局寻优,不仅实现了SPM的二维联合估计方法,而且加速了搜索最优参数的收敛过程.IQCA算法对SVDSPM的估计不仅提高了算法实时性,且与标准遗传算法(SGA)、免疫遗传算法(IGA)和量子进化算法(QEA)相比,大大提高了估计精度和稳定性.同时,双源估计的结果也表明本文算法在低信噪比下的性能优于MUSIC算法.
信號相位匹配(SPM)原理同時估計信號方位和頻率兩參數時,因計算量大,需設置固定的搜索步長和頻帶範圍.針對該問題,提齣瞭一種利用免疫量子剋隆算法(IQCA)對聲源波達方嚮和頻率二維參數進行快速聯閤估計的高分辨方法.將SPM原理的奇異值分解(SVDSPM)判彆準則作為具有雙自變量(方位和頻率)的適應度函數,併通過IQCA對該適應度函數進行非線性全跼尋優,不僅實現瞭SPM的二維聯閤估計方法,而且加速瞭搜索最優參數的收斂過程.IQCA算法對SVDSPM的估計不僅提高瞭算法實時性,且與標準遺傳算法(SGA)、免疫遺傳算法(IGA)和量子進化算法(QEA)相比,大大提高瞭估計精度和穩定性.同時,雙源估計的結果也錶明本文算法在低信譟比下的性能優于MUSIC算法.
신호상위필배(SPM)원리동시고계신호방위화빈솔량삼수시,인계산량대,수설치고정적수색보장화빈대범위.침대해문제,제출료일충이용면역양자극륭산법(IQCA)대성원파체방향화빈솔이유삼수진행쾌속연합고계적고분변방법.장SPM원리적기이치분해(SVDSPM)판별준칙작위구유쌍자변량(방위화빈솔)적괄응도함수,병통과IQCA대해괄응도함수진행비선성전국심우,불부실현료SPM적이유연합고계방법,이차가속료수색최우삼수적수렴과정.IQCA산법대SVDSPM적고계불부제고료산법실시성,차여표준유전산법(SGA)、면역유전산법(IGA)화양자진화산법(QEA)상비,대대제고료고계정도화은정성.동시,쌍원고계적결과야표명본문산법재저신조비하적성능우우MUSIC산법.
The signal phase matching (SPM) principle is difficult to give out the fixed steplength and the frequency band when it searches the direction-of-arrival (DOA) and the frequency of signals simultaneously. Aimed at the problem, a rapid method for joint estimation of two-dimensional parameters with high resolution is proposed by using the immune quantum-clonal algorithm (IQCA). The novel method constructs the fitness function from the singular value decomposition of the SPM principle (SVDSPM) and takes the DOA and the frequency as two independent variables. The IQCA optimizes the fitness function nonlinearly and globally, realizes the method of the two-dimensional joint estimation based on the SPM, and accelerates the searching convergence of the optimal parameters. Compared with the simple genetic algorithm (SGA), the immune genetic algorithm (IGA) and the quantum evolution algorithm (QEA), the proposed algorithm improves the accuracy and the stability of the parameter estimation. Furthermore, the estimation results of two sources show that the performance of the new algorithm is better than that of MUSIC algorithm at the low SNR.