岩石学报
巖石學報
암석학보
ACTA PETROLOGICA SINICA
2009年
9期
2078-2088
,共11页
魏春景%苏香丽%娄玉行%李艳娟
魏春景%囌香麗%婁玉行%李豔娟
위춘경%소향려%루옥행%리염연
榴辉岩%地质温压计%PT视剖面图
榴輝巖%地質溫壓計%PT視剖麵圖
류휘암%지질온압계%PT시부면도
Eclogite%Geothermobarometry%PT pseudosection
石榴石-单斜辉石(GC)温度计和石榴石-单斜辉石-多硅白云母(GCP)压力计是确定榴辉岩形成温压条件的最常用方法,二者主要依据石榴石、绿辉石和多硅白云母中相组分之间的交换和转换变质反应.依据MORB成分计算的PT视剖面图表明,在不同榴辉岩矿物组合中,控制3个矿物相成分变化的相组分之间的变质反应不同.在低温含绿泥石、滑石和蓝闪石榴辉岩组合中,石榴石和绿辉石的镁含量主要受到含水矿物脱水反应的控制,并都随温度升高而升高,二者之间的铁镁交换反应并不起主要作用.因此,在自然界含有蓝闪石等含水矿物的低温榴辉岩中,由于绿辉石相对富镁而常常导致GC温度计结果偏低.在含有硬柱石的高压-超高压榴辉岩中,石榴石中的钙含量受到硬柱石的控制,随着压力升高或温度降低,硬柱石含量增加,使石榴石中钙降低,此时石榴石-绿辉石-多硅白云母之间的转换反应对石榴石成分的影响会很微弱,由于石榴石相对贫钙而导致GCP压力计结果偏低.在含有蓝晶石的中温高压-超高压榴辉岩中,矿物成分的变化受到石榴石-绿辉石之间的铁镁交换反应和石榴石.绿辉石.多硅白云母-蓝晶石-石英/柯石英之间的一系列转换反应控制,因此,GC和GCP温压计都能给出相对合理的结果.在低压普通角闪石榴辉岩中,石榴石和绿辉石中的镁含量主要反应压力变化,有时并不指示变质作用温度.在含有蓝闪石等含水矿物的低温榴辉岩中,Thermocalc程序中的平均温压(avPT)方法可以给出比较合适的温度,但压力结果与GCP压力计一样也会偏低一些.在蓝闪石和绿帘石等含水矿物消失后的中温蓝晶石榴辉岩中,avPT方法难以给出合理的PT信息.相对来说,视剖面图方法能够给出最多的PT信息,是目前确定变质岩PT条件的最好方法.
石榴石-單斜輝石(GC)溫度計和石榴石-單斜輝石-多硅白雲母(GCP)壓力計是確定榴輝巖形成溫壓條件的最常用方法,二者主要依據石榴石、綠輝石和多硅白雲母中相組分之間的交換和轉換變質反應.依據MORB成分計算的PT視剖麵圖錶明,在不同榴輝巖礦物組閤中,控製3箇礦物相成分變化的相組分之間的變質反應不同.在低溫含綠泥石、滑石和藍閃石榴輝巖組閤中,石榴石和綠輝石的鎂含量主要受到含水礦物脫水反應的控製,併都隨溫度升高而升高,二者之間的鐵鎂交換反應併不起主要作用.因此,在自然界含有藍閃石等含水礦物的低溫榴輝巖中,由于綠輝石相對富鎂而常常導緻GC溫度計結果偏低.在含有硬柱石的高壓-超高壓榴輝巖中,石榴石中的鈣含量受到硬柱石的控製,隨著壓力升高或溫度降低,硬柱石含量增加,使石榴石中鈣降低,此時石榴石-綠輝石-多硅白雲母之間的轉換反應對石榴石成分的影響會很微弱,由于石榴石相對貧鈣而導緻GCP壓力計結果偏低.在含有藍晶石的中溫高壓-超高壓榴輝巖中,礦物成分的變化受到石榴石-綠輝石之間的鐵鎂交換反應和石榴石.綠輝石.多硅白雲母-藍晶石-石英/柯石英之間的一繫列轉換反應控製,因此,GC和GCP溫壓計都能給齣相對閤理的結果.在低壓普通角閃石榴輝巖中,石榴石和綠輝石中的鎂含量主要反應壓力變化,有時併不指示變質作用溫度.在含有藍閃石等含水礦物的低溫榴輝巖中,Thermocalc程序中的平均溫壓(avPT)方法可以給齣比較閤適的溫度,但壓力結果與GCP壓力計一樣也會偏低一些.在藍閃石和綠簾石等含水礦物消失後的中溫藍晶石榴輝巖中,avPT方法難以給齣閤理的PT信息.相對來說,視剖麵圖方法能夠給齣最多的PT信息,是目前確定變質巖PT條件的最好方法.
석류석-단사휘석(GC)온도계화석류석-단사휘석-다규백운모(GCP)압력계시학정류휘암형성온압조건적최상용방법,이자주요의거석류석、록휘석화다규백운모중상조분지간적교환화전환변질반응.의거MORB성분계산적PT시부면도표명,재불동류휘암광물조합중,공제3개광물상성분변화적상조분지간적변질반응불동.재저온함록니석、활석화람섬석류휘암조합중,석류석화록휘석적미함량주요수도함수광물탈수반응적공제,병도수온도승고이승고,이자지간적철미교환반응병불기주요작용.인차,재자연계함유람섬석등함수광물적저온류휘암중,유우록휘석상대부미이상상도치GC온도계결과편저.재함유경주석적고압-초고압류휘암중,석류석중적개함량수도경주석적공제,수착압력승고혹온도강저,경주석함량증가,사석류석중개강저,차시석류석-록휘석-다규백운모지간적전환반응대석류석성분적영향회흔미약,유우석류석상대빈개이도치GCP압력계결과편저.재함유람정석적중온고압-초고압류휘암중,광물성분적변화수도석류석-록휘석지간적철미교환반응화석류석.록휘석.다규백운모-람정석-석영/가석영지간적일계렬전환반응공제,인차,GC화GCP온압계도능급출상대합리적결과.재저압보통각섬석류휘암중,석류석화록휘석중적미함량주요반응압력변화,유시병불지시변질작용온도.재함유람섬석등함수광물적저온류휘암중,Thermocalc정서중적평균온압(avPT)방법가이급출비교합괄적온도,단압력결과여GCP압력계일양야회편저일사.재람섬석화록렴석등함수광물소실후적중온람정석류휘암중,avPT방법난이급출합리적PT신식.상대래설,시부면도방법능구급출최다적PT신식,시목전학정변질암PT조건적최호방법.
The garnet-clinopyroxene (GC) thermometer and garnet-clinopyroxene-phengite(GCP) barometer are commonly used for determining the PT conditions of eclogite metamorphism. These thermobarometries are calibrated from the exchange and net transfer reactions among the phase components in garnet, clinopyroxene and phengite. The calculated PT pseudosections from a MORB composition indicate that in different eclogite assemblages there are different exchange and net transfer reactions among the phase components to control the compositions of the three minerals: In the chlorite-, talc- and glaucophane-bearing low-r eclogites, the Mg-contents in garnet and omphacite are dependent on the dehydrations of hydrous minerals, increasing as temperature rise, and the Fe-Mg exchange reaction between garnet and omphacite plays a trivial role. Thus, in the natural low-T eclogites which contain glaucophane and other hydrous minerals, omphacite is usually rich in Mg, which may result in the GC thermometer giving lower temperature results. In the lawsonite-bearing HP-UHP eclogites, the Ca-contents in garnet are dependent on the proportions of lawsonite, decreasing as pressure rise or temperature decrease. In this case, the net transfer reactions among garnet, omphacite and phengite may have a minor effect on the garnet compositions, and the GCP barometer may give lower pressure results due to garnet poor-in Ca. In the medium-T kyanite-bearing UP-UHP eclogites, the garnet, omphacite and phengite compositions are largely controlled by the Fe-Mg exchange reactions between garnet and omphacite, and the net transfer reactions in garnet- omphacite- phengite- kyanite- quartz / coesite. Thus, both GC thermometer and GCP barometer can give available PT results. In the lower-P hornblende-bearing eclogite, the Mg-contents in garnet and omphacite mainly reflect pressure changes, and commonly do not reflect temperature variations. The average PT mode ( avPT) in Thermocalc could give available temperature results, and relatively lower pressures similar to those from the GCP barometer for the glaucophane-bearing low-r eclogites, but could not yield reasonable PT formation for the medium-T kyanite eclogites without the hydrous minerals such as glaucophane and epidote etc. Comparatively, the pseudosection thermobarometry can provide much more PT formation, and is the most optimal method for determining the metamorphic PT conditions.