延边大学学报(自然科学版)
延邊大學學報(自然科學版)
연변대학학보(자연과학판)
JOURNAL OF YANBIAN UNIVERSITY(NATURAL SCIENCE EDITION)
2009年
4期
292-295
,共4页
球面稳定同伦群%Adams谱序列%May谱序列
毬麵穩定同倫群%Adams譜序列%May譜序列
구면은정동륜군%Adams보서렬%May보서렬
stable homotopy groups of spheres%Adams spectral sequence%May spectral sequence
通过May谱序列的方法,在古典ASS谱序列上证明了非平凡积k0δs+4∈Exts+6,t(s)A(Zp,Zp),当p≥11,0≤s≤p-4,t(s)=(s+4)p3q+(s+3)p2q+(s+4)pq+(s+2)q+s, 其中q=2(p-1).
通過May譜序列的方法,在古典ASS譜序列上證明瞭非平凡積k0δs+4∈Exts+6,t(s)A(Zp,Zp),噹p≥11,0≤s≤p-4,t(s)=(s+4)p3q+(s+3)p2q+(s+4)pq+(s+2)q+s, 其中q=2(p-1).
통과May보서렬적방법,재고전ASS보서렬상증명료비평범적k0δs+4∈Exts+6,t(s)A(Zp,Zp),당p≥11,0≤s≤p-4,t(s)=(s+4)p3q+(s+3)p2q+(s+4)pq+(s+2)q+s, 기중q=2(p-1).
The non-triviality of the product k0ds+4δExtAs+6,t(s)(Zp,Zp) in the classical Adams spectral sequence is proved by explicit combinatorial analysis of the (modified) May spectral sequence, where p=11 0 =s= p-4, t(s) = (s +4) p3 q+ is + 3) p2 q +(s + 4) pq + (s+2)q + s where q = 2(p-1).