软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2010年
1期
55-67
,共13页
胡华%庄毅%胡海洋%赵格华
鬍華%莊毅%鬍海洋%趙格華
호화%장의%호해양%조격화
网格%多重查询优化%高维索引%数据分片
網格%多重查詢優化%高維索引%數據分片
망격%다중사순우화%고유색인%수거분편
grid%multi-query optimization%high-dimensional indexing%data partition
提出一种网格环境下基于流水线技术的分布式多重相似查询的优化算法(pipeline-based distributed similarity query processing,简称pGMSQ).首先,当用户提交若干个查询请求时,采用基于代价的动态层次聚类策略(dynamic query clustering,简称DQC)对其进行合并.然后在数据结点层,采用索引支持的向量集缩减方法快速过滤无关向量.最后,在执行结点层对候选向量执行求精操作返回结果向量.由于本查询采用了流水线技术,实验结果表明,该方法在提高查询性能的同时也提高了系统的吞吐量.
提齣一種網格環境下基于流水線技術的分佈式多重相似查詢的優化算法(pipeline-based distributed similarity query processing,簡稱pGMSQ).首先,噹用戶提交若榦箇查詢請求時,採用基于代價的動態層次聚類策略(dynamic query clustering,簡稱DQC)對其進行閤併.然後在數據結點層,採用索引支持的嚮量集縮減方法快速過濾無關嚮量.最後,在執行結點層對候選嚮量執行求精操作返迴結果嚮量.由于本查詢採用瞭流水線技術,實驗結果錶明,該方法在提高查詢性能的同時也提高瞭繫統的吞吐量.
제출일충망격배경하기우류수선기술적분포식다중상사사순적우화산법(pipeline-based distributed similarity query processing,간칭pGMSQ).수선,당용호제교약간개사순청구시,채용기우대개적동태층차취류책략(dynamic query clustering,간칭DQC)대기진행합병.연후재수거결점층,채용색인지지적향량집축감방법쾌속과려무관향량.최후,재집행결점층대후선향량집행구정조작반회결과향량.유우본사순채용료류수선기술,실험결과표명,해방법재제고사순성능적동시야제고료계통적탄토량.
This paper proposes a multi-query optimization algorithm for pipeline-based distributed similarity query processing (pGMSQ) in grid environment. First, when a number of query requests are simultaneously submitted by users, a cost-based dynamic query clustering (DQC) is invoked to quickly and effectively identify the correlation among the query spheres (requests). Then, index-support vector set reduction is performed at data node level in parallel. Finally, refinement of the candidate vectors is conducted to get the answer set at the execution node level. By adopting pipeline-based technique, this algorithm is experimentally proved to be efficient and effective in minimizing the response time by decreasing network transfer cost and increasing the throughput.