计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2009年
12期
1593-1597
,共5页
无机离了晶体%晶格能%结构.性质关系%BP神经网络
無機離瞭晶體%晶格能%結構.性質關繫%BP神經網絡
무궤리료정체%정격능%결구.성질관계%BP신경망락
mineral crystal%lattice energy%QSPR%BPNN
以86个离子化合物的正、负离子的有效核电荷Z~(*+)、Z~(*-)、离子半径r~+、r_-以及正离子的荷径比Z~(*+)/r~+5种结构参数作为自变量,以晶格能U作为因变量,采用BP神经网络建立关于无机离子晶体晶格能的结构-性质关系(QSPR)模型.该模型由输入层、隐含层和输出层构成3层BP神经网络,86个离子化合物样本则按文献分别划分为训练集和验证集.研究表明,当隐含层神经元个数为5时模犁效果最佳:该模型对训练集拟合结果的决定系数R~2=0.996 5,平均相对误差MRE=1.63%:对验证集预测结果的R~2=0.995 2,MRE=1.85%.
以86箇離子化閤物的正、負離子的有效覈電荷Z~(*+)、Z~(*-)、離子半徑r~+、r_-以及正離子的荷徑比Z~(*+)/r~+5種結構參數作為自變量,以晶格能U作為因變量,採用BP神經網絡建立關于無機離子晶體晶格能的結構-性質關繫(QSPR)模型.該模型由輸入層、隱含層和輸齣層構成3層BP神經網絡,86箇離子化閤物樣本則按文獻分彆劃分為訓練集和驗證集.研究錶明,噹隱含層神經元箇數為5時模犛效果最佳:該模型對訓練集擬閤結果的決定繫數R~2=0.996 5,平均相對誤差MRE=1.63%:對驗證集預測結果的R~2=0.995 2,MRE=1.85%.
이86개리자화합물적정、부리자적유효핵전하Z~(*+)、Z~(*-)、리자반경r~+、r_-이급정리자적하경비Z~(*+)/r~+5충결구삼수작위자변량,이정격능U작위인변량,채용BP신경망락건립관우무궤리자정체정격능적결구-성질관계(QSPR)모형.해모형유수입층、은함층화수출층구성3층BP신경망락,86개리자화합물양본칙안문헌분별화분위훈련집화험증집.연구표명,당은함층신경원개수위5시모리효과최가:해모형대훈련집의합결과적결정계수R~2=0.996 5,평균상대오차MRE=1.63%:대험증집예측결과적R~2=0.995 2,MRE=1.85%.
QSPR model of the lattice energy of mineral crystal was built by BPNN consisted of three layers, with the descriptors of Z~(*+) (effective nuclear charges on cations), Z~(*-) (effective nuclear charges on anions), r~+ (Goldshmidt radius of cations), r_- (Goldshmidt radius of anions) and Z~(*+)/r~+.86 samples of the mineral crystal were divided into training and test set as the literature. The coefficient of determination R~2 for the training set is 0.996 5 and for the test set is 0.995 2, which can be considered very satisfactory. In addition, the mean relative error MRE was within 1.63% and 1.85% for the training set and the test set respectively. The study showed that the descriptors in the model were of clear physical and chemical meaning and the predicting results were superior to those in literature evidently.