东南大学学报(英文版)
東南大學學報(英文版)
동남대학학보(영문판)
JOURNAL OF SOUTHEAST UNIVERSITY
2010年
3期
453-456
,共4页
李文书%骆建华%刘且根%何芳芳%魏秀金
李文書%駱建華%劉且根%何芳芳%魏秀金
리문서%락건화%류차근%하방방%위수금
迭代正则化模型(IRM)%总变差%变尺度参数%图像去噪
迭代正則化模型(IRM)%總變差%變呎度參數%圖像去譟
질대정칙화모형(IRM)%총변차%변척도삼수%도상거조
iterative regularization model (IRM)%total variation%varying scale parameter%image denoising
为了降低迭代正则化中定尺度参数对快速收敛的敏感性、自适应地优化尺度参数并提高其去噪效果,提出了一种变尺度参数的迭代正则化去噪算法.首先, 修改了经典的正则化项,并推导出尺度参数公式;然后,通过研究迭代次数与尺度参数序列的变化趋势,得到变尺度参数的初始值;最后,进行正则化去噪.数值实验表明:相对于恒定尺度参数的IRM算法,变尺度参数IRM算法比选取尺度参数偏小的IRM算法迭代次数大大减少;比选取尺度参数偏大的IRM算法去噪效果更为明显,并较好地保持了图像的细节.
為瞭降低迭代正則化中定呎度參數對快速收斂的敏感性、自適應地優化呎度參數併提高其去譟效果,提齣瞭一種變呎度參數的迭代正則化去譟算法.首先, 脩改瞭經典的正則化項,併推導齣呎度參數公式;然後,通過研究迭代次數與呎度參數序列的變化趨勢,得到變呎度參數的初始值;最後,進行正則化去譟.數值實驗錶明:相對于恆定呎度參數的IRM算法,變呎度參數IRM算法比選取呎度參數偏小的IRM算法迭代次數大大減少;比選取呎度參數偏大的IRM算法去譟效果更為明顯,併較好地保持瞭圖像的細節.
위료강저질대정칙화중정척도삼수대쾌속수렴적민감성、자괄응지우화척도삼수병제고기거조효과,제출료일충변척도삼수적질대정칙화거조산법.수선, 수개료경전적정칙화항,병추도출척도삼수공식;연후,통과연구질대차수여척도삼수서렬적변화추세,득도변척도삼수적초시치;최후,진행정칙화거조.수치실험표명:상대우항정척도삼수적IRM산법,변척도삼수IRM산법비선취척도삼수편소적IRM산법질대차수대대감소;비선취척도삼수편대적IRM산법거조효과경위명현,병교호지보지료도상적세절.
In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.