南京大学学报(数学半年刊)
南京大學學報(數學半年刊)
남경대학학보(수학반년간)
JOURNAL OF NANJING UNIVERSITY MATHEMATICAL BIQUARTERLY
2008年
1期
56-66
,共11页
二级迭代%相容次序矩阵%AOR方法%SOR方法%最佳参数%谱半径
二級迭代%相容次序矩陣%AOR方法%SOR方法%最佳參數%譜半徑
이급질대%상용차서구진%AOR방법%SOR방법%최가삼수%보반경
two-stage iterative methods%consistently ordered matrix%AOR method%SOR method%the optimum parameter%spectral radius
在不同情况下AOR和SOR方法有各自的优点,本文通过利用当一个线性系统的系数矩阵为(1,1)相容次序矩阵且它的Jacobi矩阵的特征值均为纯虚数或0时AOR迭代方法收敛的最佳参数以及它的最佳谱半径与SOR方法的比较,研究了在二级迭代的情况下这两种方法该如何选取.
在不同情況下AOR和SOR方法有各自的優點,本文通過利用噹一箇線性繫統的繫數矩陣為(1,1)相容次序矩陣且它的Jacobi矩陣的特徵值均為純虛數或0時AOR迭代方法收斂的最佳參數以及它的最佳譜半徑與SOR方法的比較,研究瞭在二級迭代的情況下這兩種方法該如何選取.
재불동정황하AOR화SOR방법유각자적우점,본문통과이용당일개선성계통적계수구진위(1,1)상용차서구진차타적Jacobi구진적특정치균위순허수혹0시AOR질대방법수렴적최가삼수이급타적최가보반경여SOR방법적비교,연구료재이급질대적정황하저량충방법해여하선취.
When the coefficient matrix of a linear system is (1,1) consistently ordered matrix and the eigenvalues of its Jacobi matrix are all pure imaginaries or zeroes, the convergence and the optimum parameters of its AOR iterative method and a comparison between its optimum spectral radius and that of SOR method are shown. Since the AOR and SOR methods have their own advantages respectively under different conditions, how to choose one of them for the convergence of the two-stage iterative methods for the solution of linear system is studied.