人工晶体学报
人工晶體學報
인공정체학보
2007年
5期
991-999
,共9页
闫小星%李云飞%薛冬峰%晏成林%王雷
閆小星%李雲飛%薛鼕峰%晏成林%王雷
염소성%리운비%설동봉%안성림%왕뢰
化学键理论%晶体生长%结晶%水合碳酸镁
化學鍵理論%晶體生長%結晶%水閤碳痠鎂
화학건이론%정체생장%결정%수합탄산미
chemical bonding theory%crystal growth%crystallization%magnesium carbonate hydrates
基于晶体学结构,将化学键理论定量地应用到水合碳酸镁Mg5(CO3)4(OH)2·4H2O和MgOgO3·3H2O的结晶行为研究中,以此指导和控制实际晶体的生长行为.根据所选晶面的化学键数目和强度,可以计算出该晶面的垂直生长速率,从而方便地预测出Mg5(CO3)4(OH)2·4H2O和MMgO3·3H2O晶体的理想形貌.Mg5(CO3)4(OH)2·4H2O晶体表现出六方片状的结晶习性,MgCO3·3H2O则具有六方柱的理想形貌.在实验中,六方片状的Mg5(CO3)4(OH)2-114心O和MgO3·3H2O六方柱可以通过简单的液相反应获得,证明我们的理论计算与实验结果完全相符.目前研究结果表明,单晶生长可以通过热力学意义上调整组成原子或离子的成键方式获得本质上的改进,这一过程为我们从动力学角度优化实验策略提供了更广阔的空间.
基于晶體學結構,將化學鍵理論定量地應用到水閤碳痠鎂Mg5(CO3)4(OH)2·4H2O和MgOgO3·3H2O的結晶行為研究中,以此指導和控製實際晶體的生長行為.根據所選晶麵的化學鍵數目和彊度,可以計算齣該晶麵的垂直生長速率,從而方便地預測齣Mg5(CO3)4(OH)2·4H2O和MMgO3·3H2O晶體的理想形貌.Mg5(CO3)4(OH)2·4H2O晶體錶現齣六方片狀的結晶習性,MgCO3·3H2O則具有六方柱的理想形貌.在實驗中,六方片狀的Mg5(CO3)4(OH)2-114心O和MgO3·3H2O六方柱可以通過簡單的液相反應穫得,證明我們的理論計算與實驗結果完全相符.目前研究結果錶明,單晶生長可以通過熱力學意義上調整組成原子或離子的成鍵方式穫得本質上的改進,這一過程為我們從動力學角度優化實驗策略提供瞭更廣闊的空間.
기우정체학결구,장화학건이론정량지응용도수합탄산미Mg5(CO3)4(OH)2·4H2O화MgOgO3·3H2O적결정행위연구중,이차지도화공제실제정체적생장행위.근거소선정면적화학건수목화강도,가이계산출해정면적수직생장속솔,종이방편지예측출Mg5(CO3)4(OH)2·4H2O화MMgO3·3H2O정체적이상형모.Mg5(CO3)4(OH)2·4H2O정체표현출륙방편상적결정습성,MgCO3·3H2O칙구유륙방주적이상형모.재실험중,륙방편상적Mg5(CO3)4(OH)2-114심O화MgO3·3H2O륙방주가이통과간단적액상반응획득,증명아문적이론계산여실험결과완전상부.목전연구결과표명,단정생장가이통과열역학의의상조정조성원자혹리자적성건방식획득본질상적개진,저일과정위아문종동역학각도우화실험책략제공료경엄활적공간.
The chemical bonding theory is used to investigate the fundamental crystallization behaviours of magnesium carbonate hydrate crystals Mg5(CO3)4OH)2·4H2O and MgCO3·3H2O in terms of crystallographic structure, with the aim to guide and control the practical crystal growth. The ideal morphology of Mg5(CO3)4(OH)2·4H2O and MgCO3·3H2O crystals has readily been predicted, by calculating the vertical growth rate of selected planes in terms of the bond number and bond strength. Theoretically,Mg5 (CO3)4(OH)2·4H2O crystal exhibits hexagonal plate-shaped characteristics, while MgCO3·3H2O crystal possesses a hexagonal prism morphology. Experimentally, the hexagonal Mg5(CO3)4(OH)2·4H2O micro-platelets and MgCO3 ·3H2O micro-prisms with reproducible shape can be obtained by a simple liquid phase reaction. Theoretical results are in a good agreement with our experimental observations. Single crystal growth can be improved by tuning the bonding modification of constituent atoms or ions, such a process can leave us a great space to kinetically maximize our experimental strategies.