系统科学与数学
繫統科學與數學
계통과학여수학
JOURNAL OF SYSTEMS SCIENCE AND MATHEMATICAL SCIENCES
2007年
5期
730-742
,共13页
p-Laplacian%多点边值%Mawhin定理.
p-Laplacian%多點邊值%Mawhin定理.
p-Laplacian%다점변치%Mawhin정리.
利用单调迭代技巧和推广的Mawhin定理得到下述带有p-Laplacian算子的多点边值问题迭代解的存在性,{(Фp(u'))'+f(t,u, Tu)=0, 0(≤)t(≤)1,u(0)=q-1∑i=1γiu(δi),u(1)=m-1∑i=1ηiu(ξi),其中Фp(s)=|s|p-2s,p>1;0<δi<1,γi>0,1(≤)i(≤)q-1;0<ξi<1,ηi(≥)0,1(≤)i(≤)m-1且q-1∑i=1γi<1,m-1∑i=1ηi(≤)1;Tu(t)=∫t0k(t,s)u(s)ds,k(t,s)∈C(I×I,R+).
利用單調迭代技巧和推廣的Mawhin定理得到下述帶有p-Laplacian算子的多點邊值問題迭代解的存在性,{(Фp(u'))'+f(t,u, Tu)=0, 0(≤)t(≤)1,u(0)=q-1∑i=1γiu(δi),u(1)=m-1∑i=1ηiu(ξi),其中Фp(s)=|s|p-2s,p>1;0<δi<1,γi>0,1(≤)i(≤)q-1;0<ξi<1,ηi(≥)0,1(≤)i(≤)m-1且q-1∑i=1γi<1,m-1∑i=1ηi(≤)1;Tu(t)=∫t0k(t,s)u(s)ds,k(t,s)∈C(I×I,R+).
이용단조질대기교화추엄적Mawhin정리득도하술대유p-Laplacian산자적다점변치문제질대해적존재성,{(Фp(u'))'+f(t,u, Tu)=0, 0(≤)t(≤)1,u(0)=q-1∑i=1γiu(δi),u(1)=m-1∑i=1ηiu(ξi),기중Фp(s)=|s|p-2s,p>1;0<δi<1,γi>0,1(≤)i(≤)q-1;0<ξi<1,ηi(≥)0,1(≤)i(≤)m-1차q-1∑i=1γi<1,m-1∑i=1ηi(≤)1;Tu(t)=∫t0k(t,s)u(s)ds,k(t,s)∈C(I×I,R+).