应用数学和力学
應用數學和力學
응용수학화역학
APPLIED MATHEMATICS AND MECHANICS
2001年
2期
151-156
,共6页
数值积分%逐步积分%非线性%积分方程
數值積分%逐步積分%非線性%積分方程
수치적분%축보적분%비선성%적분방정
提出了一个求解动力学问题的新方法(DIM_IM),将动力学方程化成积分方程的形式,借助于该方程构造出了具有显式预测_校正的单步、自起动和四阶精度的积分型直接积分算法,理论分析和算例指出,这一方法较中心差分法、Houbolt法、Newmark法和Wilson_θ法都有较高的精度,本方法适用于强非线性,非保守系统,
提齣瞭一箇求解動力學問題的新方法(DIM_IM),將動力學方程化成積分方程的形式,藉助于該方程構造齣瞭具有顯式預測_校正的單步、自起動和四階精度的積分型直接積分算法,理論分析和算例指齣,這一方法較中心差分法、Houbolt法、Newmark法和Wilson_θ法都有較高的精度,本方法適用于彊非線性,非保守繫統,
제출료일개구해동역학문제적신방법(DIM_IM),장동역학방정화성적분방정적형식,차조우해방정구조출료구유현식예측_교정적단보、자기동화사계정도적적분형직접적분산법,이론분석화산례지출,저일방법교중심차분법、Houbolt법、Newmark법화Wilson_θ법도유교고적정도,본방법괄용우강비선성,비보수계통,
A new approach which is a direct integration method with integral model (DIM_IM) to solve dynamic governing equations is presented. The governing equations are integrated into the integral equations. An algorithm with explicit and predict_correct and self_starting and four order accuracy to integrate the integral equations is given. Theoretical analysis and numerical examples show that DIM_IM discribed in this paper suitable for strong non_linear and non_conservative system have higher accuracy than central difference,Houbolt,Newmark and Wilson_Theta methods.