数学的实践与认识
數學的實踐與認識
수학적실천여인식
MATHEMATICS IN PRACTICE AND THEORY
2001年
1期
83-88
,共6页
丁勇%薛斐%张振%涂永明%陈恩水
丁勇%薛斐%張振%塗永明%陳恩水
정용%설비%장진%도영명%진은수
本文先利用问题一中铺设线路无分岔的特点,建立了基于图解法的最小面积模型,将规划问题转化为使若干折线段下方面积和最小的问题,通过简单的判别准则,手工求得最小总费用为1278631.6万元,并对该结果最优性进行了说明. 对问题三参考网络流思想建立了适用于一般铺设路线的非线性规划模型,用SAS得到一个最优方案和最小费用1406631.4万元,并用此模型对问题一的灵敏度进行了准确的定量分析.
本文先利用問題一中鋪設線路無分岔的特點,建立瞭基于圖解法的最小麵積模型,將規劃問題轉化為使若榦摺線段下方麵積和最小的問題,通過簡單的判彆準則,手工求得最小總費用為1278631.6萬元,併對該結果最優性進行瞭說明. 對問題三參攷網絡流思想建立瞭適用于一般鋪設路線的非線性規劃模型,用SAS得到一箇最優方案和最小費用1406631.4萬元,併用此模型對問題一的靈敏度進行瞭準確的定量分析.
본문선이용문제일중포설선로무분차적특점,건립료기우도해법적최소면적모형,장규화문제전화위사약간절선단하방면적화최소적문제,통과간단적판별준칙,수공구득최소총비용위1278631.6만원,병대해결과최우성진행료설명. 대문제삼삼고망락류사상건립료괄용우일반포설로선적비선성규화모형,용SAS득도일개최우방안화최소비용1406631.4만원,병용차모형대문제일적령민도진행료준학적정량분석.
We succeeded in drawing up an optimal plan for the order and transportation of pipelines by establishing two models. A diagrammatic model is set up for the first problem in which there is no branch in the track of pipelines. Solution of the problem is then equivalent to the plan that minimizes some area of a special diagram. The idea of flow in network helps to set up a non-linear programming model for the last problem where the track is a tree diagram. The regular form of the model makes it convenient to find the solution by The SAS System. The model is also used to give an accurate sensitivity analysis for the first problem.