力学学报
力學學報
역학학보
ACTA MECHANICA SINICA
2001年
1期
109-114
,共6页
黏弹性%界面裂纹%应力强度因子%积分逆变换%奇异积分方程
黏彈性%界麵裂紋%應力彊度因子%積分逆變換%奇異積分方程
점탄성%계면렬문%응력강도인자%적분역변환%기이적분방정
研究两半无限大黏弹性体界面Griffith 裂纹在反平面剪切突加载荷下,裂纹尖端动应力强度因子的时间响应.首先,运用积分变换方法将黏弹性混合边值问题化成变换域上的对偶积分方程.通过引入裂纹位错密度函数进一步化成Cauchy型奇异积分方程.运用分片连续函数法数值求解奇异积分方程,得到变换域内的动应力强度因子.再用Laplace积分变换数值反演方法,将变换域的解反演到时间域内,最终求得动应力强度因子的时间响应,并对黏弹性参数的影响进行了分析.
研究兩半無限大黏彈性體界麵Griffith 裂紋在反平麵剪切突加載荷下,裂紋尖耑動應力彊度因子的時間響應.首先,運用積分變換方法將黏彈性混閤邊值問題化成變換域上的對偶積分方程.通過引入裂紋位錯密度函數進一步化成Cauchy型奇異積分方程.運用分片連續函數法數值求解奇異積分方程,得到變換域內的動應力彊度因子.再用Laplace積分變換數值反縯方法,將變換域的解反縯到時間域內,最終求得動應力彊度因子的時間響應,併對黏彈性參數的影響進行瞭分析.
연구량반무한대점탄성체계면Griffith 렬문재반평면전절돌가재하하,렬문첨단동응력강도인자적시간향응.수선,운용적분변환방법장점탄성혼합변치문제화성변환역상적대우적분방정.통과인입렬문위착밀도함수진일보화성Cauchy형기이적분방정.운용분편련속함수법수치구해기이적분방정,득도변환역내적동응력강도인자.재용Laplace적분변환수치반연방법,장변환역적해반연도시간역내,최종구득동응력강도인자적시간향응,병대점탄성삼수적영향진행료분석.
In this paper, the dynamic stress intensity factor(DSIF) at crack-tip ofGriffith interface crack along two dissimilar half-infinite isotropicviscoelastic bodies under anti-plane sudden load is considered. First,integral transformation method is used to transform the convolutionmotion equation of viscoelastic materials into algebraic version intransformation domain. The viscoelastic mixed boundary problem intransformation domain is reduced to dual integral equations of crackopen displacement (COD) which is furthermore changed into Cauchy-typedsingular integral equation by the introduction of crack dislocationdensity function. Next, the numerical method based on piecewisecontinuous function given by Kurtz is used to solve the singularintegral equation. After the numerical results of crack dislocationdensity function are obtained, the numerical results of dynamic stressintensity factor can be computed from them. At last, the numericalinverse integral transformation method--DAC method is used to reconvertthe numerical results of dynamic stress intensity factor intransformation domain to that in time domain. In order to show theeffects of viscoelastic material parameter, the dynamic stress intensityfactors of Griffith crack in the interface of two elastic materials, twoviscoelastic materials and elastic and viscoelastic materials and forvarious viscoelastic material parameter as well are evaluated in thenumerical example. The characteristics of response curve of DSIF arediscussed and the affection of viscoelastic material parameter to it isanalyzed based on numerical results.