润滑与密封
潤滑與密封
윤활여밀봉
LUBRICATION ENGINEERING
2009年
7期
97-101
,共5页
姚智刚%王伟钢%武通海%毛军红%谢友柏
姚智剛%王偉鋼%武通海%毛軍紅%謝友柏
요지강%왕위강%무통해%모군홍%사우백
油液监测%数据管理%趋势分析
油液鑑測%數據管理%趨勢分析
유액감측%수거관리%추세분석
oil monitoring%data management%trend analysis
针对全寿命周期设备的视情维护目标,建立了基于在线监测和离线分析的二级监测数据管理以及分析系统.该系统包含在线监测数据管理模块和离线分析数据管理模块.在线监测数据管理模块通过网络将在线监测数据存储在本地数据库,实现了在线数据的自动化管理,采用GM(1,1)等维新息预测模型实现了对在线油液指标数据发展趋势的实时预测,提取在线特征指标建立了支持向量机状态识别模型,实现了磨损状态的异常判断并给出离线分析建议.离线数据管理模块实现油液离线分析数据(理化、光谱、红外、分析铁谱、直读铁谱)的录人和维护,通过参考油液标准库评判油品性能的好坏,最终结合在线监测和离线分析结果做出视情维护决策的建议.
針對全壽命週期設備的視情維護目標,建立瞭基于在線鑑測和離線分析的二級鑑測數據管理以及分析繫統.該繫統包含在線鑑測數據管理模塊和離線分析數據管理模塊.在線鑑測數據管理模塊通過網絡將在線鑑測數據存儲在本地數據庫,實現瞭在線數據的自動化管理,採用GM(1,1)等維新息預測模型實現瞭對在線油液指標數據髮展趨勢的實時預測,提取在線特徵指標建立瞭支持嚮量機狀態識彆模型,實現瞭磨損狀態的異常判斷併給齣離線分析建議.離線數據管理模塊實現油液離線分析數據(理化、光譜、紅外、分析鐵譜、直讀鐵譜)的錄人和維護,通過參攷油液標準庫評判油品性能的好壞,最終結閤在線鑑測和離線分析結果做齣視情維護決策的建議.
침대전수명주기설비적시정유호목표,건립료기우재선감측화리선분석적이급감측수거관리이급분석계통.해계통포함재선감측수거관리모괴화리선분석수거관리모괴.재선감측수거관리모괴통과망락장재선감측수거존저재본지수거고,실현료재선수거적자동화관리,채용GM(1,1)등유신식예측모형실현료대재선유액지표수거발전추세적실시예측,제취재선특정지표건립료지지향량궤상태식별모형,실현료마손상태적이상판단병급출리선분석건의.리선수거관리모괴실현유액리선분석수거(이화、광보、홍외、분석철보、직독철보)적록인화유호,통과삼고유액표준고평판유품성능적호배,최종결합재선감측화리선분석결과주출시정유호결책적건의.
A two-stage data administration and intelligent analysis system, composed of on-line monitoring and off-line analysis modules,was established for equipment group life-cycle condition-based maintenance. On-line monitoring module was designed to store on-line data by a local database via internet and administrate the data automatically. A real-time trend was predicated from the on-line data using a GM ( 1,1 ) model. An intelligent wear state classification model was es-tablished using Support Vector Machine (SVM). On-line character indexes were input into this model to diagnose the ab-normal and give an off-line analysis advice. The off-line data administration module was designed as an interface of input and maintenance of off-line analysis indexes ( including physiochemical, spectrum, analytical and directing reading ferro-graph indexes) ,and the oil quality can be evaluated by referring to a criterion. A final decision of conditional maintenance based monitoring can be made by integrating the results of on-line monitoring and off-line analysis.